首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
化学   3篇
数学   2篇
物理学   11篇
  2020年   2篇
  2018年   1篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2003年   1篇
  1993年   1篇
  1984年   3篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
A kinetic theory is employed to study Cherenkov wave in an inhomogeneous dusty plasma. Two different frequency regimes are considered incorporating the plasma species temperatures. The dispersion relation for one-dimensional Cherenkov wave is derived and analyzed. The plasma species temperatures, their cyclotron frequencies, and the plasma density inhomogeneity effect the growth/damping of Cherenkov waves. It is shown that the plasma inhomogeneity contributes to damping of Cherenkov waves.  相似文献   
2.
Using the extended Poincaré-Lighthill-Kuo (EPLK) method, the interaction between two ion acoustic solitary waves (IASWs) in a multicomponent magnetized plasma (including Tsallis nonextensive electrons) has been theoretically investigated. The analytical phase shifts of the two solitary waves after interaction are estimated. The proposed model leads to rarefactive solitons only. The effects of colliding angle, ratio of number densities of (positive/negative) ions species to the density of nonextensive electrons, ion-to-electron temperature ratio, mass ratio of the negative-to-positive ions and the electron nonextensive parameter on the phase shifts are investigated numerically. The present results show that these parameters have strong effects on the phase shifts and trajectories of the two IASWs after collision. Evidently, this model is helpful for interpreting the propagation and the oblique collision of IASWs in magnetized multicomponent plasma experiments and space observations.  相似文献   
3.
4.
The dispersion properties of three-dimensional electrostatic waves in a nonuniform electron–positron (EP) magnetoplasma are analyzed. A new dispersion relation is derived by use of the electron and positron density responses arising from the electron and positron continuity and Poisson equations. In the local approximation, the dispersion relation admits two wave modes with different velocities. The growth rates of various modes are illustrated both analytically and numerically. Considering the temperature gradients produces a linearly stable transverse mode. The growth rate of the slow mode instability due to the density inhomogeneity only is the highest one, though it appears at higher thermal energy. The angle of the wave propagation affects drastically on the instability features in each case. The applications of the present analysis are briefly discussed.  相似文献   
5.
An investigation has been made of modulational instability of a nonlinear ion acoustic wave in a weakly relativistic warm unmagnetized nonthermal plasma whose constituents are an inertial ion fluid and nonthermally distributed electrons. Up to the second order of the perturbation theory, a nonlinear Schr?dinger type (NST) equation for the complex amplitude of the perturbed ion density is obtained. The coefficients of this equation show that the relativistic effect, the finite ion temperature and the nonthermal electrons modify the condition of the modulational stability. The association between the small-wavenumber limit of the NST equation and the oscillatory solution of the Korteweg-de Varies equation, obtained by a reductive perturbation theory, is satisfied.  相似文献   
6.
In this paper, a modified Korteweg–de Vries (mKdV) equation and Korteweg–de Vries (KdV) equation at critical ion density are derived for dusty plasmas consisting of hot dust fluid, nonisothermal ions and two-temperature electrons. The charge fluctuation dynamics of the dust grains has also been considered. It has been shown that the presence of a second component of electrons modifies the nature of dust acoustic (DA) solitary structures. The effects of two-temperature electrons, obliqueness and external magnetic field on the properties of DA solitary waves are discussed. Numerical investigations show that there exists only rarefactive solitary waves.  相似文献   
7.
The electrostatic double layer (DL) structures are studied in negative ion plasma with nonextensive electrons q-distribution. The extended Korteweg–de Vries (EKdV) equation is derived using a reductive perturbation method. It is found that both fast (compressive) and slow (rarefactive) ion acoustic (IA) DLs can propagate in such type of plasmas. The effects of various plasma physical parameters; such as nonextensivity of electrons, presence of negative ions, temperature of both positive and negative ions and different mass ratios of positive to negative ions on the formation of DL structures are discussed in detail with numerical illustrations.  相似文献   
8.
Propagation regimes of an arbitrary amplitude dust acoustic solitary wave in a dusty plasma with an ion beam are analyzed by employing the Sagdeev potential technique. Two domains of the Mach numbers are defined depending on the ion beam and plasma parameters. Only a rarefactive soliton solution is found in a low velocity regime. Numerical solutions are presented that illustrate the dependence of soliton characteristics on practically interesting plasma and ion beam parameters. The findings of this investigation could be useful in understanding the nonlinear interaction of external ion beam and dusty plasma observed in laboratory plasma experiments.  相似文献   
9.
The nonlinear features of dust acoustic waves (DAWs) propagating in a multicomponent dusty plasma with negative dust grains, Maxwellian ions, and double spectral electron distribution (DSED) are investigated. A Korteweg de Vries Burgers equation (KdVB) is derived in the presence of the polarization force using the reductive perturbation technique (RPT). In the absence of the dissipation effect, the bifurcation analysis is introduced and various types of solutions are obtained. One of these solutions is the rarefactive solitary wave solution. Additionally, in the presence of the dissipation effects, the tanh method is employed to find out the solution of KdVB equation. Both of the monotonic and the oscillatory shock structures are numerically investigated. It is found that the correlation between dissipation and dispersion terms participates strongly in creating the dust acoustic shock wave. The limit of the DSED to the Maxwell distribution is examined. The distortional effects in the profile of the shock wave that result by increasing the values of the flatness parameter, r, and the tail parameter, q, are investigated. In addition, it has been shown that the proportional increase in the value of the polarization parameter R enhances in both of the strength of the monotonic shock wave and the amplitude of the oscillatory shock wave. The effectiveness of non-Maxwellian distributions, like DSED, in several of plasma situations is discussed as well.  相似文献   
10.
Pressure is accepted theoretically as a useful variable. However in a studies on liquid or solid samples, it is still relatively unusual for pressure to be used as an experimental variable. The reluctance of experimentalists to use this theoretically attractive variable is caused mainly by the technical difficulties associated with the use of sufficiently high pressures. In this talk I will try to show that in many cases the experimental limitations are no longer those introduced by the use of high pressures. High pressure spectroscopic studies clearly imply the use of high pressure spectroscopic cells. A brief account will therefore be given of the various types of high pressure optical cells which are currently being used for spectroscopic studies. Each individual high pressure spectroscopic study has its own special justification. However there are a few quite general observations that can be made which cover many of the specific objectives of individual high pressure spectroscopic studies. For example:(i) pressure induced frequency shifts carry unambiguous information about anharmonic terms in the relevant potential function (i.e. the potential V is a function of distance d. therefore pressure can be used to change d and study V.)(ii) all known materials undergo structural phase transitions if the form which is thermodynamically stable under ambient conditions is compressed to high enough pressures: these high pressure phases should be studied.(iii) as the application of pressure forces a material towards a phase transition, the spectroscopic study can be used to gain information about the approaching structural instability.(iv) virtually all infrared and Raman spectra contain examples of Fermi resonance which confuse the interpretation of the spectra and the effects of pressure are valuable aids to the correct assignment of the resonating levels.(v) pressure induced frequency shifts can often give extra information to help with the more reliable assignment of features within a spectrum.The above points will be discussed and illustrated by examples chosen mainly from recent work by members of the spectroscopy group at King's College London.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号