首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   1篇
化学   52篇
物理学   19篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   5篇
  2010年   3篇
  2009年   4篇
  2008年   6篇
  2007年   8篇
  2006年   5篇
  2005年   4篇
  2004年   7篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1999年   2篇
  1996年   1篇
  1985年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有71条查询结果,搜索用时 15 毫秒
1.
The preparation of new "scorpionate" ligands in the form of the lithium derivatives [(Li(bdmpzdta)(H(2)O))(4)] (1) [bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate], [Li(bdphpza)(H(2)O)(THF)] (2) [bdphpza = bis(3,5-diphenylpyrazol-1-yl)acetate], and [Li(bdphpzdta)(H(2)O)(THF)] (3) [bdphpzdta = bis(3,5-diphenylpyrazol-1-yl)dithioacetate] has been carried out. Furthermore, a series of titanium complexes has been prepared by reaction of TiCl(4)(THF)(2) with the lithium reagents [(Li(bdmpza)(H(2)O))(4)] (4) [bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate] and 1. Under the appropriate experimental conditions neutral complexes, namely [TiCl(3)(kappa(3)-bdmpza)] (5), [TiCl(3)(kappa(3)-bdmpzdta)] (6), and [TiCl(2)(kappa(2)-bdmpzdta)(2)] (7), and cationic complexes, namely [TiCl(2)(THF)(kappa(3)-bdmpza)]Cl (8) and [TiCl(2)(THF)(kappa(3)-bdmpzdta)]Cl (9), were isolated. Complexes 8 and 9 undergo an interesting nucleophilic THF ring-opening reaction to give the corresponding alkoxide-containing species [TiCl(2)(kappa(3)-bdmpza)(O(CH(2))(4)Cl)] (10) and [TiCl(2)(kappa(3)-bdmpzdta)(O(CH(2))(4)Cl)] (11). A family of alkoxide-containing complexes of general formulas [TiCl(2)(kappa(3)-bdmpza)(OR)] [R = Me (12); R = Et (14); R = (i)Pr (16); R = (t)Bu (18)] and [TiCl(2)(kappa(3)-bdmpzdta)(OR)] [R = Me (13); R = Et (15); R = (i)Pr (17)] was also prepared. The structures of these complexes have been determined by spectroscopic methods, and in addition, the X-ray crystal structures of 3, 7, 10, and 11 were also established.  相似文献   
2.
The electron transfer reaction between [Ru(NH3)5pz]2+ and [Co(C2O4)3]3? was studied in the presence of monomers and aggregates of bile salts (sodium deoxycholate, sodium taurodeoxycholate, and sodium glycocholate) at 298.2 ± 0.1 K. The results show a decreasing rate constant with the successive addition of bile salts. To rationalize the trends of the reaction rate on the [bile salts], two models were used. One of them takes into account the aggregation feature by considering a stepwise self‐association between monomers, whereas the other assumes the formation of a critical micellar concentration. Binding constants between [Ru(NH3)5pz]2+ species and deoxycholate or taurodeoxycholate aggregates were higher than that for glycocholate aggregates. These results are consistent with the way in which the monomers are added to form the bile anion aggregates.  相似文献   
3.
Photoemission from AgCl, AgBr, and AgI has been studied at photon energies hω = 16.8, 21.2, 26.9, 40.8, 48.4 and 1486.6 eV. By exploiting the strong  相似文献   
4.
The title reaction was studied in different water–cosolvent (methanol) mixtures. The results have been rationalized employing the Marcus–Hush treatment. To apply this treatment, the true, unimolecular, electron‐transfer rate constants (ket) were obtained from the experimentally measured rate constants after calculation of the equilibrium constant for the processes of formation of the encounter complex. This calculation was carried out using Eigen–Fuoss (EF) and exponential mean spherical (EMSA) approaches employing effective values of the solvent dielectric constant. These effective values were obtained from the measured association constants corresponding to other ion pairs. The results reveal that in these media there is an additional component of reorganization energy, absent in neat solvents. An explanation of the origin of this component is given. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 658–666, 2009  相似文献   
5.
New enantiopure imines (1-9) with a chiral substrate to control the stereochemistry of a newly created stereogenic center have been synthesized by reaction of the commercially available (1R)-(-)-myrtenal and different primary amines. The diastereomerically enriched lithium-scorpionate compounds [Li(κ(3)-mobpza)(THF)] (10) (mobpza = N-p-methylphenyl-(1R and 1S)-1-[(1R)-6,6-dimethylbicyclo[3.1.1]-2-hepten-2-yl]-2,2-bis(3,5-dimethylpyrazol-1-yl)ethylamide), [Li(κ(3)-mobpza)(THF)] (11) (mobpza = N-p-methoxyphenyl-(1R and 1S)-1-[(1R)-6,6-dimethylbicyclo[3.1.1]-2-hepten-2-yl]-2,2-bis(3,5-dimethylpyrazol-1-yl)ethylamide), [Li(κ(3)-fbpza)(THF)] (12) (fbpza = N-p-fluorophenyl-(1R and 1S)-1-[(1R)-6,6-dimethylbicyclo[3.1.1]-2-hepten-2-yl]-2,2-bis(3,5-dimethylpyrazol-1-yl)ethylamide), and [Li(κ(3)-clbpza)(THF)] (13) (clbpza = N-p-chlorophenyl-(1R and 1S)-1-[(1R)-6,6-dimethylbicyclo[3.1.1]-2-hepten-2-yl]-2,2-bis(3,5-dimethylpyrazol-1-yl)ethylamide) were obtained by a diastereoselective 1,2-addition of an organolithium reagent to imines in good yield and with good diastereomeric excess (ca. 80%). The complexes [LiCl(κ(2)-R,R-fbpzaH)(THF)] (14) and [LiCl(κ(2)-R,R-clbpzaH)(THF)] (15) were obtained in enantiomerically pure form by the treatment of THF solutions of 12 or 13 with NH(4)Cl. The enantiomerically pure amines (R,R-mbpzaH) (16), (R,R-mobpzaH) (17), (R,R-fbpzaH) (18), and (R,R-clbpzaH) (19) were obtained by hydrolysis of the lithium-scorpionate compounds 10-13 with H(2)O. The lithium compound 12 was reacted with [TiCl(4)(THF)(2)] or [ZrCl(4)] to give the enantiopure complexes [MCl(3)(κ(3)-R,R-fbpza)] [M = Ti (20), Zr (21)]. The amine compound 18 reacted with [MX(4)] (M = Ti, X = O(i)Pr, OEt; M = Zr; X = NMe(2)) to give the complexes [MX(3)(κ(3)-R,R-fbpza)] (22-24). The reaction of Me(3)SiCl with [Zr(NMe(2))(3)(κ(3)-R,R-fbpza)] (24) in different molar ratios led to the halide-amide-containing complexes [ZrCl(NMe(2))(2)(κ(3)-R,R-fbpza)] (25) and [ZrCl(2)(NMe(2))(κ(3)-R,R-fbpza)] (26) and the halide complex 21. The isolation of only one of the three possible diastereoisomers of complexes 25 and 26 revealed that chiral induction from the ligand to the zirconium center took place. The structures of these compounds were elucidated by (1)H and (13)C{(1)H} NMR spectroscopy, and the X-ray crystal structures of 5, 12, 14, 15, and 24 were also established.  相似文献   
6.
Three Pd(II) phthalocyanine–carotenoid dyads featuring chromophores linked by amide bonds were prepared in order to investigate the rate of triplet–triplet (T‐T) energy transfer from the tetrapyrrole to the covalently attached carotenoid as a function of the number of conjugated double bonds in the carotenoid. Carotenoids having 9, 10 and 11 conjugated double bonds were studied. Transient absorption measurements show that intersystem crossing in the Pd(II) phthalocyanine takes place in 10 ps in each case and that T‐T energy transfer occurs in 126, 81 and 132 ps in the dyads bearing 9, 10 and 11 double bond carotenoids, respectively. To identify the origin of this variation in T‐T energy transfer rates, density functional theory (DFT) was used to calculate the T‐T electronic coupling in the three dyads. According to the calculations, the primary reason for the observed T‐T energy transfer trend is larger T‐T electronic coupling between the tetrapyrrole and the 10‐double bond carotenoid. A methyl group adjacent to the amide linker that connects the Pd(II) phthalocyanine and the carotenoid in the 9 and 11‐double bond carotenoids is absent in the 10‐double bond carotenoid, and this difference alters its electronic structure to increase the coupling.  相似文献   
7.
Reaction of hybrid scorpionate/cyclopentadienyl ligands in the form of the lithium derivatives [Li(bpzcp)(THF)] [bpzcp=2,2-bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethylcyclopentadienyl], [Li(bpztcp)(THF)] [bpztcp=2,2-bis(3,5-dimethylpyrazol-1-yl)-1-tert-butylethylcyclopentadienyl], and the in situ-generated "Li(bpzpcp)" [bpzpcp=2,2-bis(3,5-dimethylpyrazol-1-yl)-1-phenylethylcyclopentadienyl] with MCl3(THF)3 afforded the group 3 halide compounds [MCl2(bpzcp)(THF)] (M=Sc, 1; Y, 2), [MCl2(bpztcp)(THF)] (M=Sc, 3; Y, 4), and [MCl2(bpzpcp)(THF)] (M=Sc, 5; Y, 6). The H2O adduct of 4, [YCl2(bpztcp)(H2O)] (7), was formed when a solution of 4 was allowed to stand at room temperature in the presence of moisture. Complexes 1-7 adopt a pseudo-octahedral structure with heteroscorpionate ligands kappa2-NNeta5-Cp coordinated to the metal through the cyclopentadienyl group and two imino nitrogens of pyrazole rings. The alkyl heteroscorpionate scandium and yttrium complexes recently reported by our group, [M(CH2SiMe3)2(bpzcp)], react with 2,6-dimethylphenol and 3,5-dimethylphenol to give the bis(aryloxide) derivatives [M(OAr)2(bpzcp)] (M=Sc, OAr=2,6-dimethylphenoxide, 8; M=Y, OAr=2,6-dimethylphenoxide, 9; M=Y, OAr=3,5-dimethylphenoxide, 10). Complex 9 underwent an interesting hydrolysis process to give the tetranuclear complex [{Y(bpzcp)}(micro-OH)2(micro3-OH){Y(OAr)2}]2 (11). Variable-temperature 1H NMR experiments on 9 and 10 revealed a rapid fluxional exchange between coordinated and noncoordinated pyrazolyl rings, producing interconversion between the two enantiomers in which the scorpionate ligand can be coordinated in a kappa1-Neta5-Cp form. The structures of the complexes were determined by spectroscopic methods and the X-ray crystal structures of 2, 7, and 11 were also established. Complexes 1 and 2 are active olefin polymerization catalysts after activation with methylaluminoxane. These compounds gave atactic polystyrenes with narrow molecular weight distribution (Mn/Mw 1.26-1.91) and with low molecular weights.  相似文献   
8.
The work described here represents the first example in which an efficient and highly diastereoselective nucleophilic 1,2-addition of an organolithium reagent has been performed on a carbonylic prostereogenic center to give an enantiopure scorpionate ligand in only one step.  相似文献   
9.
The nucleation process of small hydrogen clusters has been studied in detail with space, time, and number size resolution on the basis of supersonic expansions of the gas through a cryogenic nozzle operating in the thermal range 24 < T <110 K. The diagnostic of the jet medium is based on high sensitivity (few photons/sec) Raman spectroscopy with very high spatial resolution ( $\approx 2~\mu$ m), enabling for quantitative measurements with time resolution in the domain of nanoseconds. Temperatures down to 0.1 K have been attained in the jet at a collisional rate low enough to avoid sudden freezing of the gas. Clusters between two and eight molecular units are observed size-resolved. Features of the ortho-ortho and ortho-para hydrogen dimers, and the role of three-body collisions for nascent dimers and trimers are reported.  相似文献   
10.
A direct comparison between photoemission measurements and band structure calculations is sometimes tricky. Matrix element effects may affect considerably the spectral weight of the electronic states and prevent the expected translational symmetry of the band structure from being observed. We show how matrix element effects can be qualitatively described to a certain extent by making an analogy between photoemission and low energy electron diffraction. We have tested this approach in two superperiodic systems. We have first explained the intensity distribution in different Brillouin zones of a surface state in Si(1 1 1)-(7 × 7), where the surface state spectral intensity does not exhibit the (7 × 7) symmetry. We have also compared the LEED intensity of superperiodic LEED spots with the energy dependence of bulk bands on a facetted Si surface as measured by photoemission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号