首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   1篇
物理学   3篇
  2018年   1篇
  2005年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
This contribution describes the synthesis of gold nanorod (Au NR)/single-wall carbon nanotube (SWCNT) heterojunctions assembled directly on Si/SiOx substrates. SWCNTs are attached to amine-functionalized Si/SiOx substrates, and Au monolayer-protected clusters (MPCs) are adsorbed to the surface of SWCNTs through hydrophobic interactions. Seed-mediated reduction of HAuCl4 with ascorbic acid in the presence of cetyltrimethylammonium bromide (CTAB) onto the Au MPCs leads to the growth of larger Au nanostructures directly on the SWCNTs. Au NRs account for 19% of the nanostructures, some of which are attached directly to the sidewall and some at the ends of the SWCNTs. Raman spectroscopic measurements of SWCNTs before and after growth of the Au nanostructures reveal that the presence of Au leads to an approximately 50-fold enhancement of the Raman scattering signal. Combining 1D nanostructures of different materials (Au and carbon in this example) is of fundamental interest and may find use in nanoelectronics, chemical sensing, electrochemical, and spectroscopy applications.  相似文献   
2.
Degassing of bundles of single-walled carbon nanotubes in vacuum at 500 K is found to drive the thermoelectricpower (TEP) strongly negative, indicating that the degassed metallic tubes in a bundle are n type. The magnitude of the negative TEP indicates that important asymmetry in the electronic carbon pi bands exists near the Fermi energy. Easily measurable increases in the TEP ( approximately 5-10 &mgr;V/K) and resistivity ( 2%-10%) are observed at 500 K upon exposure to N2 and He, suggesting that even gas collisions with the nanotube wall can contribute significantly to the transport properties.  相似文献   
3.
4.
Results are presented of in situ studies of the thermoelectric power and four-probe resistance of single-walled carbon nanotube films during the adsorption of cyclic hydrocarbons C(6)H(2n) (n=3-6). The size of the change in these transport parameters is found to be related to the pi electron population of the molecule, suggesting the coupling between these pi electrons and those in the nanotube wall may be responsible for the observed effects. A transport model for the SWNT film behavior is presented, incorporating the effects of a new scattering channel associated with the adsorbed molecules.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号