首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22774篇
  免费   2911篇
  国内免费   1747篇
化学   16976篇
晶体学   247篇
力学   969篇
综合类   72篇
数学   2297篇
物理学   6871篇
  2024年   43篇
  2023年   336篇
  2022年   647篇
  2021年   664篇
  2020年   736篇
  2019年   760篇
  2018年   679篇
  2017年   606篇
  2016年   961篇
  2015年   965篇
  2014年   1216篇
  2013年   1686篇
  2012年   1907篇
  2011年   2062篇
  2010年   1432篇
  2009年   1202篇
  2008年   1506篇
  2007年   1368篇
  2006年   1261篇
  2005年   1098篇
  2004年   875篇
  2003年   744篇
  2002年   696篇
  2001年   434篇
  2000年   423篇
  1999年   336篇
  1998年   288篇
  1997年   256篇
  1996年   254篇
  1995年   204篇
  1994年   241篇
  1993年   164篇
  1992年   160篇
  1991年   128篇
  1990年   131篇
  1989年   126篇
  1988年   75篇
  1987年   57篇
  1986年   54篇
  1985年   75篇
  1984年   53篇
  1983年   34篇
  1982年   42篇
  1981年   36篇
  1980年   39篇
  1979年   36篇
  1977年   27篇
  1976年   32篇
  1975年   25篇
  1973年   34篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Thin films with a nanometer-scale thickness are of great interest to both scientific and industrial communities due to their numerous applications and unique behaviors different from the bulk. However, the understanding of thin-film mechanics is still greatly hampered due to their intrinsic fragility and the lack of commercially available experimental instruments. In this review, we first discuss the progression of thin-film mechanical testing methods based on the supporting substrate: film-on-solid substrate method, film-on-water tensile tests, and water-assisted free-standing tensile tests. By comparing past studies on a model polymer, polystyrene, the effect of different substrates and confinement effect on the thin-film mechanics is evaluated. These techniques have generated fruitful scientific knowledge in the field of organic semiconductors for the understanding of structure–mechanical property relationships. We end this review by providing our perspective for their bright prospects in much broader applications and materials of interest.  相似文献   
2.
3.
The requirement of green and sustainable materials to prepare heterogeneous catalysts has intensified for practical reasons over the past few decades. Carbohydrates are possibly the most plentiful and renewable organic materials in nature with inimitable physiochemical properties, plausible low-cost and large-scale production, and sustainability features could be exploited in the generation of nanostructured heterogeneous catalysts. This review article outlines the organic transformations catalyzed by diverse carbohydrate-based nanostructured catalysts in greener and environmentally friendly processes. Selected examples are highlighted for a variety of organic reactions exploiting the proposed catalysts’ reactivity and reusability, and interactions with the intrinsic nature of the applied carbohydrate supports; advantages and speculated challenges of the introduced catalysts are deliberated as well.  相似文献   
4.
Chen  C. Y.  Kao  C. L.  Huang  S. T.  Kuo  C. E.  Song  P. L.  Li  W. J.  Hsu  L. T.  Li  H. T. 《Chemistry of Natural Compounds》2022,58(1):107-109
Chemistry of Natural Compounds -  相似文献   
5.
Solar-driven interfacial vaporization by localizing solar-thermal energy conversion to the air−water interface has attracted tremendous attention. In the process of converting solar energy into heat energy, photothermal materials play an essential role. Herein, a flexible solar-thermal material di-cyan substituted 5,12-dibutylquinacridone (DCN−4CQA)@Paper was developed by coating photothermal quinacridone derivatives on the cellulose paper. The DCN−4CQA@Paper combines desired chemical and physical properties, broadband light-absorbing, and shape-conforming abilities that render efficient photothermic vaporization. Notably, synergetic coupling of solar-steam and solar-electricity technologies by integrating DCN−4CQA@Paper and the thermoelectric devices is realized without trade-offs, highlighting the practical consideration toward more impactful solar heat exploitation. Such solar distillation and low-grade heat-to-electricity generation functions can provide potential opportunities for fresh water and electricity supply in off-grid or remote areas.  相似文献   
6.
7.
The three-dimensional structure of nanocomposite microgels was precisely determined by cryo-electron micrography. Several nanocomposite microgels that differ with respect to their nanocomposite structure, which were obtained from seeded emulsion polymerization in the presence of microgels, were used as model nanocomposite materials for cryo-electron micrography. The obtained three-dimensional segmentation images of these nanocomposite microgels provide important insights into the interactions between the hydrophobic monomers and the microgels, that is, hydrophobic styrene monomers recognize molecular-scale differences in polarity within the microgels during the emulsion polymerization. This result led to the formation of unprecedented multi-layered nanocomposite microgels, which promise substantial potential in colloidal applications.  相似文献   
8.
In allogeneic transplantation, including the B6 anti-BALB.B settings, H60 and H4 are two representative dominant minor histocompatibility antigens that induce strong CD8 T-cell responses. With different distribution patterns, H60 expression is restricted to hematopoietic cells, whereas H4 is ubiquitously expressed. H60-specific CD8 T-cell response has been known to be dominant in most cases of B6 anti-BALB.B allo-responses, except in the case of skin transplantation. To understand the mechanism underlying the subdominance of H60 during allogeneic skin transplantation, we investigated the dynamics of the H60-specific CD8 T cells in B6 mice transplanted with allogeneic BALB.B tail skin. Unexpectedly, longitudinal bioluminescence imaging and flow cytometric analyses revealed that H60-specific CD8 T cells were not always subdominant to H4-specific cells but instead showed a brief dominance before the H4 response became predominant. H60-specific CD8 T cells could expand in the draining lymph node and migrate to the BALB.B allografts, indicating their active participation in the anti-BALB.B allo-response. Enhancing the frequencies of H60-reactive CD8 T cells prior to skin transplantation reversed the immune hierarchy between H60 and H4. Additionally, H60 became predominant when antigen presentation was limited to the direct pathway. However, when antigen presentation was restricted to the indirect pathway, the expansion of H60-specific CD8 T cells was limited, whereas H4-specific CD8 T cells expanded significantly, suggesting that the temporary immunodominance and eventual subdominance of H60 could be due to their reliance on the direct antigen presentation pathway. These results enhance our understanding of the immunodominance phenomenon following allogeneic tissue transplantation.  相似文献   
9.
10.
The PeakForce Quantitative Nanomechanical Mapping based on atomic force microscope (AFM) is employed to first visualize and then quantify the elastic properties of a model nitrile rubber/poly(vinyl chloride) (NBR/PVC) blend at the nanoscale. This method allows us to consistently observe the changes in mechanical properties of each phase in polymer blends. Beyond measuring and discriminating elastic modulus and adhesion forces of each phase, we tune the AFM tips and the peak force parameters in order to reliably image samples. In view of viscoelastic difference in each phase, a three‐phase coexistence of an unmixed NBR phase, the mixed phase, and PVC microcrystallites is directly visualized in NBR/PVC blends. The nanomechanical investigation is also capable of recognizing the crosslinked rubber phase in cured rubber. The contribution of the mixed phase was quantified and it was found that the mechanical properties of blends are mainly determined by the homogeneity and stiffness of the mixed phase. This study furthers our understanding the structure–mechanical property relationship of thermoplastic elastomers, which is important for their potential design and applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 662–669  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号