首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   0篇
化学   13篇
物理学   84篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   10篇
  2010年   3篇
  2009年   4篇
  2008年   5篇
  2007年   8篇
  2006年   4篇
  2005年   9篇
  2004年   5篇
  2003年   9篇
  2002年   4篇
  2001年   5篇
  2000年   2篇
  1999年   5篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1994年   1篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
1.
Doublet mass measurements of the isobars28Si3 and12C7 are performed by use of a Penning trap mass spectrometer and the Fourier transform ion cyclotron resonance (FT-ICR). The carbon and silicon cluster ions are produced by laser ablation. Results of these preliminary measurements are presented.  相似文献   
2.
3.
Various geometric configurations for the excitation of coherent ion motion in Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR/MS) are analyzed (in some cases for the first time) with unified notation. The instantaneous power absorption, F v, in which v is ion velocity and F the force produced by the applied excitation electric field (harmonic, single frequency, on-resonance, in-phase), is time averaged and then set equal to the time rate of change of ion total (cyclotron + magnetron + trapping) energy, to yield a differential equation that is readily solved for the (time-dependent) amplitude of each of the various ion motions. The standard FT-ICR excitation (namely, radial dipolar) is reviewed. The effects of quadrature and radial quadrupolar excitation on ion radial (cyclotron and magnetron) motions are also reviewed. Frictional damping is shown to decrease the ion cyclotron orbital radius and trapping amplitude but increase the magnetron radius. Feedback excitation (i.e., excitation at the simultaneously detected ion cyclotron orbital frequency of the same ion packet) is introduced and analyzed as a means for exciting ions whose cyclotron frequency changes during excitation (as for relativistically shifted low-mass ions). In contrast to conventional radial dipolar excitation, axial dipolar excitation of the trapping motion leads to a mass-dependent ion motional amplitude. Parametric (i.e., axial quadrupolar) excitation is shown to produce an exponential increase in the ion motional amplitudes (hyperbolic sine and hyperbolic cosine amplitude for cyclotron and magnetron radii, respectively). More detailed consideration of parametric excitation leads to an optimal ion initial radial position in parametric-mode FT-ICRjMS.  相似文献   
4.
ISOLTRAP is a Penning trap mass spectrometer for high-precision mass measurements on short-lived nuclides installed at the on-line isotope separator ISOLDE at CERN. The masses of close to 300 radionuclides have been determined up to now. The applicability of Penning trap mass spectrometry to mass measurements of exotic nuclei has been extended considerably at ISOLTRAP by improving and developing this double Penning trap mass spectrometer over the past two decades. The accurate determination of nuclear binding energies far from stability includes nuclei that are produced at rates less than 100 ions/s and with half-lives well below 100ms. The mass-resolving power reaches 107 corresponding to 10keV for medium heavy nuclei and the uncertainty of the resulting mass values has been pushed down to below 10-8. The article describes technical developments achieved since 1996 and the present performance of ISOLTRAP.  相似文献   
5.
The cyclotron frequencies of singly charged carbon clusters Cn + (n ≥ 2) were measured with the Penning-trap mass spectrometer ISOLTRAP at ISOLDE/CERN. The present limit of mass accuracy δm/m = 1.2 . 10-8 and the extent of the mass-dependent systematic shift (δm/m)sys = 1.7(0.6) . 10-10/u . (m - m ref) of the setup were investigated for the first time. In addition, absolute mass measurements by use of pure clusters of the most abundant carbon isotope 12C are now possible at ISOLTRAP. Received: 21 March 2002 / Accepted: 16 May 2002 / Published online: 31 October 2002 RID="a" ID="a"Present address: CERN, CH-1211 Geneva 23, Switzerland; e-mail: klaus.blaum@cern.ch  相似文献   
6.
Using resonant laser ionization, beta-decay studies, and for the first time mass measurements, three beta-decaying states have been unambiguously identified in 70Cu. A mass excess of -62 976.1(1.6) keV and a half-life of 44.5(2) s for the (6-) ground state have been determined. The level energies of the (3-) isomer at 101.1(3) keV with T(1/2)=33(2) s and the 1+ isomer at 242.4(3) keV with T(1/2)=6.6(2) s are confirmed by high-precision mass measurements. The low-lying levels of 70Cu populated in the decay of 70Ni and in transfer reactions compare well with large-scale shell-model calculations, and the wave functions appear to be dominated by one proton-one neutron configurations outside the closed Z=28 shell and N=40 subshell. This does not apply to the 1+ state at 1980 keV which exhibits a particular feeding and deexcitation pattern not reproduced by the shell-model calculations.  相似文献   
7.
The mass of 22Mg     
Mass measurements with a relative precision of better than 1.5 x 10(-8) were performed on 22Mg and its reaction partners 21Na and 22Na with the ISOLTRAP Penning trap mass spectrometer at CERN, yielding the mass excesses D(22Mg)=-399.92(27) keV, D(21Na)=-2184.71(21) keV, and D(22Na)=-5181.56(16) keV. The importance of these results is twofold. First, a comparative half-life (Ft value) has been obtained for the superallowed beta decay of 22Mg to further test the conserved-vector-current hypothesis. Second, the resonance energy for the 21Na proton capture reaction has been independently determined, allowing direct comparisons of observable gamma radiation in nova explosions with the yield expected from models.  相似文献   
8.
9.
Dipolar and single-phase two-electrode quadrupolar detection schemes have been investigated at a Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) setup built for the KATRIN experiment at the Max-Planck-Institute for Nuclear Physics (MPIK) in Heidelberg. We present first experimental results of 7Li?+? signals from a cylindrical Penning trap configuration for both detection schemes. While the prominent signal of the conventional dipolar detection scheme marks the reduced cyclotron frequency, the main signal for the quadrupolar detection appears at the sum of the reduced cyclotron frequency and the magnetron frequency. For ideal trapping fields, this sum frequency equals the ion cyclotron frequency ?? c ?=?qB/(2??m). Sidebands due to the combined motions of the cyclotron mode and magnetron mode are observed by quadrupolar detection which allows the determination of the respective combinations of eigenfrequencies.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号