首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
化学   9篇
数学   5篇
物理学   13篇
  2022年   1篇
  2021年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2004年   1篇
  2000年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
排序方式: 共有27条查询结果,搜索用时 31 毫秒
1.
The Resource-Constrained Project Scheduling Project (RCPSP), together with some of its extensions, has been widely studied. A fundamental assumption in this basic problem is that activities in progress are non-preemptable. Very little effort has been made to uncover the potential benefits of discrete activity pre-emption, and the papers dealing with this issue have reached the conclusion that it has little effect on project length when constant resource availability levels are defined. In this paper we show how three basic elements of many heuristics for the RCPSP – codification, serial SGS and double justification – can be adapted to deal with interruption. The paper is mainly focussed on problem 1_PRCPSP, a generalization of the RCPSP where a maximum of one interruption per activity is allowed. However, it is also shown how these three elements can be further adapted to deal with more general pre-emptive problems. Computational experiments on the standard j30 and j120 sets support the conclusion that pre-emption does help to decrease project length when compared to the no-interruption case. They also prove the usefulness of the justification in the presence of pre-emption. The justification is a RCPS technique that can be easily incorporated into a wide range of algorithms for the RCPSP, increasing their solution quality – maintaining the number of schedules calculated.  相似文献   
2.
The Skilled Workforce Project Scheduling Problem (SWPSP) is a complex problem of task scheduling and resource assignment that comes up in the daily management of many company Service Centres (SC). The SWPSP considers many real characteristics faced daily by the SC: client-company service quality agreements that establish maximum dates for the beginning and the end of tasks with penalties for delays, criticality levels indicating the client-priority in processing each task, generalized precedence relationships that can produce cycle structures, time period and percentage time lags and variable task durations depending on the worker executing the task. Furthermore, the SC workforce is made up of specialist workers characterised by efficiency levels showing their efficiency and speed executing the several types of tasks. Each worker has his or her own timetable.  相似文献   
3.
We present a population-based approach to the RCPSP. The procedure has two phases. The first phase handles the initial construction of a population of schedules and these are then evolved until high quality solutions are obtained. The evolution of the population is driven by the alternative application of an efficient improving procedure for locally improving the use of resources, and a mechanism for combining schedules that blends scatter search and path relinking characteristics. The objective of the second phase is to explore in depth those vicinities near the high quality schedules. Computational experiments on the standard j120 set, generated using ProGen, show that our algorithm produces higher quality solutions than state-of-the-art heuristics for the RCPSP in an average time of less than five seconds.  相似文献   
4.
We apply the Bogoliubov-de Gennes equations to the confinement of a monopole-antimonopole pair in a superconductor. This is related to the problem of a quark-antiquark pair bound by a confining string, consisting of a colour-electric flux tube, dual to the magnetic vortex of type-II superconductors. We study the confinement of the field lines due to the superconducting state and calculate the effective potential between the two monopoles. The monopoles can be simulated in a real experiment inserting two long and thin magnetic rods. At short distances the potential is Coulombic and at large distances the potential is linear, as previously determined solving the Ginzburg-Landau equations. The magnetic field lines and the string tension are also studied as a function of the temperature T. Because we take into account the explicit fermionic degrees of freedom, this work may open new perspectives to the breaking of chiral symmetry or to colour superconductivity.  相似文献   
5.
6.
The reaction of copper(II) sulfate, copper(II) chloride, 3,5-diacetylamino-1,2,4-triazole, and 3-acetylamino-5-amino-1,2,4-triazole in water yields green, plate-shaped crystals of [[{Cu3(mu3-OH(1/2))L(H2O)2Cl}2{mu-Cu(H2O)2Cl2}].12H2O]n (1), where L is a new triazole-derived macrocyclic ligand. The structure of 1 consists of heptanuclear (H)OCuII(3)-CuII-CuII(3)O(H) entities linked in pairs through symmetric mu3-O...H...O-mu3 hydrogen bonds to form a double-stranded one-dimensional network. A significant overall antiferromagnetic behavior has been observed for 1.  相似文献   
7.
8.
We uncover the low-energy spectrum of a t-J model for electrons on a square lattice of spin-1 iron atoms with 3d xz and 3d yz orbital character by applying Schwinger-boson-slave-fermion mean-field theory and by exact diagonalization of one hole roaming over a 4 × 4 × 2 lattice. Hopping matrix elements are set to produce hole bands centered at zero two-dimensional (2D) momentum in the free-electron limit. Holes can propagate coherently in the t-J model below a threshold Hund coupling when long-range antiferromagnetic order across the d + = 3d (x + iy)z and d ? = 3d (x ? iy)z orbitals is established by magnetic frustration that is off-diagonal in the orbital indices. This leads to two hole-pocket Fermi surfaces centered at zero 2D momentum. Proximity to a commensurate spin-density wave (cSDW) that exists above the threshold Hund coupling results in emergent Fermi surface pockets about cSDW momenta at a quantum critical point (QCP). This motivates the introduction of a new Gutzwiller wavefunction for a cSDW metal state. Study of the spin-fluctuation spectrum at cSDW momenta indicates that the dispersion of the nested band of one-particle states that emerges is electron-type. Increasing Hund coupling past the QCP can push the hole-pocket Fermi surfaces centered at zero 2D momentum below the Fermi energy level, in agreement with recent determinations of the electronic structure of mono-layer iron-selenide superconductors.  相似文献   
9.
We have studied, via laser absorption spectroscopy, the velocity distribution of (7)Li atoms released from a solid neon matrix at cryogenic temperatures. The Li atoms are implanted into the Ne matrix by laser ablation of a solid Li precursor. A heat pulse is then applied to the sapphire substrate sublimating the matrix together with the isolated atoms at around 12 K. We find interesting differences in the velocity distribution of the released Li atoms from the model developed for our previous experiment with Cr [R. Lambo, C. C. Rodegheri, D. M. Silveira, and C. L. Cesar, Phys. Rev. A 76, 061401(R) (2007)]. This may be due to the sublimation regime, which is at much lower flux for the Li experiment than for the Cr experiment, as well as to the different collisional cross sections between those species to the Ne gas. We find a drift velocity compatible with Li being thermally sublimated at 11-13 K, while the velocity dispersion around this drift velocity is low, around 5-7 K. With a slow sublimation of the matrix we can determine the penetration depth of the laser ablated Li atoms into the Ne matrix, an important information that is not usually available in most matrix isolation spectroscopy setups. The present results with Li, together with the previous results with Cr suggest this to be a general technique for obtaining cryogenic atoms, for spectroscopic studies, as well as for trap loading. The release of the isolated atoms is also a useful tool to study and confirm details of the matrix isolated atoms which are masked or poorly understood in the solid.  相似文献   
10.
We present evidence that the S = 1 Haldane- Shastry model has a gap in the energy spectrum, extending to the case of a model with long-range interactions results previously obtained by Haldane and, numerically, by other authors for the case of short-range interactions. We studied the groundstate and first excited state using a modified Lanczos algorithm and obtained the low temperature behavior diagonalizing exactly small chains. The correlation functions decay exponentially with distance and the low-T susceptibility decays exponentially to zero. The gap is larger than for the Heisenberg model and the correlation functions decay faster indicating a smaller correlation length.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号