首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5848篇
  免费   296篇
  国内免费   32篇
化学   4074篇
晶体学   14篇
力学   181篇
数学   744篇
物理学   1163篇
  2023年   45篇
  2022年   66篇
  2021年   99篇
  2020年   114篇
  2019年   115篇
  2018年   91篇
  2017年   74篇
  2016年   173篇
  2015年   158篇
  2014年   201篇
  2013年   276篇
  2012年   427篇
  2011年   467篇
  2010年   222篇
  2009年   200篇
  2008年   376篇
  2007年   364篇
  2006年   345篇
  2005年   326篇
  2004年   272篇
  2003年   164篇
  2002年   174篇
  2001年   68篇
  2000年   62篇
  1999年   53篇
  1998年   33篇
  1997年   45篇
  1996年   63篇
  1995年   52篇
  1994年   63篇
  1993年   53篇
  1992年   54篇
  1991年   33篇
  1990年   35篇
  1989年   31篇
  1988年   26篇
  1986年   37篇
  1985年   53篇
  1984年   57篇
  1983年   33篇
  1982年   46篇
  1981年   59篇
  1980年   37篇
  1979年   44篇
  1978年   45篇
  1977年   43篇
  1976年   46篇
  1975年   43篇
  1974年   32篇
  1973年   31篇
排序方式: 共有6176条查询结果,搜索用时 312 毫秒
1.
2.
In this communication, we report the synthesis of small‐sized (<10 nm), water‐soluble, magnetic nanoparticles (MNPs) coated with polyhedral oligomeric silsesquioxanes (POSS), which contain either polyethylene glycol (PEG) or octa(tetramethylammonium) (OctaTMA) as functional groups. The POSS‐coated MNPs exhibit superparamagnetic behavior with saturation magnetic moments (51–53 emu g?1) comparable to silica‐coated MNPs. They also provide good colloidal stability at different pH and salt concentrations, and low cytotoxicity to MCF‐7 human breast epithelial cells. The relaxivity data and magnetic resonance (MR) phantom images demonstrate the potential application of these MNPs in bioimaging.  相似文献   
3.
Journal of Computer-Aided Molecular Design - Accurate predictions of acid dissociation constants are essential to rational molecular design in the pharmaceutical industry and elsewhere. There has...  相似文献   
4.
Thermal decarbonylation of the acyl compounds [Mn(CO)5(CORF)] (RF=CF3, CHF2, CH2CF3, CF2CH3) yielded the corresponding alkyl derivatives [Mn(CO)5(RF)], some of which have not been previously reported. The compounds were fully characterized by analytical and spectroscopic methods and by several single-crystal X-ray diffraction studies. The solution-phase IR characterization in the CO stretching region, with the assistance of DFT calculations, has allowed the assignment of several weak bands to vibrations of the [Mn(12CO)4(eq-13CO)(RF)] and [Mn(12CO)4(ax-13CO)(RF)] isotopomers and a ranking of the RF donor power in the order CF3<CHF2<CH2CF3≈CF2CH3. The homolytic Mn−RF bond cleavage in [Mn(CO)5(RF)] at various temperatures under saturation conditions with trapping of the generated RF radicals by excess tris(trimethylsilyl)silane yielded activation parameters ΔH and ΔS that are believed to represent close estimates of the homolytic bond dissociation thermodynamic parameters. These values are in close agreement with those calculated in a recent DFT study (J. Organomet. Chem. 2018 , 864, 12–18). The ability of these complexes to undergo homolytic Mn−RF bond cleavage was further demonstrated by the observation that [Mn(CO)5(CF3)] (the compound with the strongest Mn−RF bond) initiated the radical polymerization of vinylidene fluoride (CH2=CF2) to produce poly(vinylidene fluoride) in good yields by either thermal (100 °C) or photochemical (UV or visible light) activation.  相似文献   
5.
ABSTRACT

Fast field-cycling (FFC) nuclear magnetic resonance relaxometry is a well-established method to determine the relaxation rates as a function of magnetic field strength. This so-called nuclear magnetic relaxation dispersion gives insight into the underlying molecular dynamics of a wide range of complex systems and has gained interest especially in the characterisation of biological tissues and diseases. The combination of FFC techniques with magnetic resonance imaging (MRI) offers a high potential for new types of image contrast more specific to pathological molecular dynamics. This article reviews the progress in FFC-MRI over the last decade and gives an overview of the hardware systems currently in operation. We discuss limitations and error correction strategies specific to FFC-MRI such as field stability and homogeneity, signal-to-noise ratio, eddy currents and acquisition time. We also report potential applications with impact in biology and medicine. Finally, we discuss the challenges and future applications in transferring the underlying molecular dynamics into novel types of image contrast by exploiting the dispersive properties of biological tissue or MRI contrast agents.  相似文献   
6.
Residual effects of an initial bolus of gadolinium contrast agent have been previously demonstrated in sequential dynamic susceptibility contrast MR experiments. While these residual effects quickly reach a saturation steady state, their etiology is uncertain, and they can lead to spurious estimates of hemodynamic parameters in activation experiments. The possible influence ofT1effects is now investigated with experiments in whichT1weighting is varied as well as with serial regionalT1measurements. Little evidence for significant residualT1effects is found, suggesting instead that susceptibility effects underlie these observations. An initial saturation dose of contrast agent minimizes this effect.  相似文献   
7.
We give a Gray code and constant average time generating algorithm for derangements, i.e., permutations with no fixed points. In our Gray code, each derangement is transformed into its successor either via one or two transpositions or a rotation of three elements. We generalize these results to permutations with number of fixed points bounded between two constants.  相似文献   
8.
STM, STS, LEED and XPS data for crystalline θ-Al2O3 and non-crystalline Al2O3 ultra-thin films grown on NiAl(0 0 1) at 1025 K and exposed to water vapour at low pressure (1 × 10−7-1 × 10−5 mbar) and room temperature are reported. Water dissociation is observed at low pressure. This reactivity is assigned to the presence of a high density of coordinatively unsaturated cationic sites at the surface of the oxide film. The hydroxyl/hydroxide groups cannot be directly identify by their XPS binding energy, which is interpreted as resulting from the high BE positions of the oxide anions (O1s signal at 532.5-532.8 eV). However the XPS intensities give evidence of an uptake of oxygen accompanied by an increase of the surface coverage by Al3+ cations, and a decrease of the concentration in metallic Al at the alloy interface. A value of ∼2 for the oxygen to aluminium ions surface concentration ratio indicates the formation of an oxy-hydroxide (AlOxOHy with x + y ∼ 2) hydroxylation product. STM and LEED show the amorphisation and roughening of the oxide film. At P(H2O) = 1 × 10−7 mbar, only the surface of the oxide film is modified, with formation of nodules of ∼2 nm lateral size covering homogeneously the surface. STS shows that essentially the valence band is modified with an increase of the density of states at the band edge. With increasing pressure, hydroxylation is amplified, leading to an increased coverage of the alloy by oxy-hydroxide products and to the formation of larger nodules (∼7 nm) of amorphous oxy-hydroxide. Roughening and loss of the nanostructure indicate a propagation of the reaction that modifies the bulk structure of the oxide film. Amorphisation can be reverted to crystallization by annealing under UHV at 1025 K when the surface of the oxide film has been modified, but not when the bulk structure has been modified.  相似文献   
9.
The radiation-induced decomposition of C4F9I and CF3I overlayers at 119 K on diamond (100) surfaces has been shown to be an efficient route to fluorination of the diamond surface. X-ray photoelectron spectroscopy has been used for photoactivation as well as for studying the photodecomposition of the fluoroalkyl iodide molecules, the attachment of the photofragments to the diamond surface, and the thermal decomposition of the fluoroalkyl ligands. Measured chemical shifts agree well with ab initio calculations of both C 1s and F 1s binding energies. It is found that chemisorbed CF3 groups on diamond (100) decompose by 300 K whereas C4F9 groups decompose over the range 300 to 700 K and this reactivity difference is rationalized on steric grounds. Both of these thermal decomposition processes produce surface C---F bonds on the diamond. The surface C---F species thermally decompose over a wide temperature range extending up to 1500 K. Hydrogen passivation of the diamond surface is ineffective in preventing free radical attack from the photodissociated products of the fluoroalkyl iodides; I atoms produced photolytically abstract H from surface C---H bonds to yield hydrogen iodide at 119 K allowing diamond fluorination. The attachment of chemisorbed F species to the diamond (100) surface causes band bending as the surface states are occupied as a result of chemisorption. This results in a shift to higher binding energy of the diamond-related C 1s levels present in the surface and subsurface regions which are sampled by XPS on the diamond. The use of photoactivation of fluoroalkyl iodides for the fluorination of diamond surfaces provides a convenient route compared to other methods involving the action of atomic F, molecular F2, XeF2 and F-containing plasmas.  相似文献   
10.
Previous researchers have designed shared control schemes with a view to minimising the likelihood that participants will conspire to perform an unauthorised act. But, human nature being what it is, systems inevitably fail; so shared control schemes should also be designed so that the police can identify conspirators after the fact. This requirement leads us to search for schemes with sparse access structures. We show how this can be done using ideas from coding theory. In particular, secret sharing schemes based on geometric codes whose dual [n,k,d] codes have d and n as their only nonzero weights are suitable. We determine their access structures and analyse their properties. We have found almost all of them, and established some relations among codes, designs and secret-sharing schemes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号