首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95885篇
  免费   27009篇
  国内免费   19736篇
化学   62808篇
晶体学   1390篇
力学   6300篇
综合类   252篇
数学   12164篇
物理学   59716篇
  2024年   477篇
  2023年   1247篇
  2022年   1489篇
  2021年   1589篇
  2020年   1996篇
  2019年   2448篇
  2018年   2237篇
  2017年   2774篇
  2016年   3194篇
  2015年   3564篇
  2014年   3513篇
  2013年   5611篇
  2012年   6238篇
  2011年   7710篇
  2010年   10485篇
  2009年   10723篇
  2008年   4764篇
  2007年   4027篇
  2006年   3597篇
  2005年   3777篇
  2004年   4424篇
  2003年   3542篇
  2002年   3364篇
  2001年   3517篇
  2000年   2658篇
  1999年   2837篇
  1998年   2391篇
  1997年   2180篇
  1996年   2516篇
  1995年   2888篇
  1994年   2943篇
  1993年   2990篇
  1992年   2529篇
  1991年   2157篇
  1990年   1836篇
  1989年   1899篇
  1988年   1871篇
  1987年   1165篇
  1986年   1232篇
  1985年   894篇
  1984年   1005篇
  1982年   902篇
  1981年   746篇
  1980年   787篇
  1979年   541篇
  1978年   555篇
  1977年   645篇
  1976年   1057篇
  1973年   447篇
  1972年   536篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
From the implementation point of view, the printable magnetic Janus colloidal photonic crystals (CPCs) microspheres are highly desirable. Herein, we developed a dispensing-printing strategy for magnetic Janus CPCs display via a microfluidics-automatic printing system. Monodisperse core/shell colloidal particles and magnetic Fe3O4 nanoparticles precursor serve as inks. Based on the equilibrium of three-phase interfacial tensions, Janus structure is successfully formed, followed by UV irradiation and self-assembly of colloid particle to generate magnetic Janus CPCs microspheres. Notably, this method shows distinct superiority with highly uniform Janus CPCs structure, where the TMPTA/Fe3O4 hemisphere is in the bottom side while CPCs hemisphere is in the top side. Thus, by using Janus CPCs microspheres with two different structural colors as pixel points, a pattern with red flower and green leaf is achieved. Moreover, 1D linear Janus CPCs pattern encapsulated by hydrogel is also fabricated. Both the color and the shape can be changed under the traction of magnets, showing great potentials in flexible smart displays. We believe this work not only offers a new feasible pathway to construct magnetic Janus CPCs patterns by a dispensing-printable fashion, but also provides new opportunities for flexible and smart displays.  相似文献   
2.
Three nonfused ring electron acceptors (NFREAs) TTC6,TT-C8T and TT-TC8 were purposefully designed and synthesized.The molecular geometry can be adjusted by the steric hindrance of lateral substituents.According to the DFT calculations,from TTC6 to TT-C8T and TT-TC8,planarity of the molecular backbone is gradually improved,accompanying with the enhancing of intramolecular charge transfer effect.As for TT-TC8,the two phenyl substituents are almost perpendicular to the molecular backbone,which endues the acceptor with good solubility and suppresses it to form over-aggregation.Multidirectional regular molecular orientation and closer molecular stacking are formed in TT-TC8 film.As a result,TT-TC8 based devices afford the highest PCE of 13.13%,which is much higher than that of TTC6 (4.41%) and TT-C8T (10.42%) and among the highest PCE values based on NFREAs.  相似文献   
3.
A numerical model was developed and validated to investigate the fluid–structure interactions between fully developed pipe flow and core–shell-structured microcapsule in a microchannel. Different flow rates and microcapsule shell thicknesses were considered. A sixth-order rotational symmetric distribution of von Mises stress over the microcapsule shell can be observed on the microcapsule with a thinner shell configuration, especially at higher flow rate conditions. It is also observed that when being carried along in a fully developed pipe flow, the microcapsule with a thinner shell tends to accumulate stress at a higher rate compared to that with a thicker shell. In general, for the same microcapsule configuration, higher flow velocity would induce a higher stress level over the microcapsule shell. The deformation gradient was used to capture the microcapsule's deformation in the present study. The effect of Young's modulus on the microcapsule shell on the microcapsule deformation was investigated as well. Our findings will shed light on the understanding of the stability of core–shell-structured microcapsule when subjected to flow-induced shear stress in a microfluidic system, enabling a more exquisite control over the breakup dynamics of drug-loaded microcapsule for biomedical applications.  相似文献   
4.
3,4-Difluorobenzyl(1-ethyl-5-(4-((4-hydroxypiperidin-1-yl)-methyl)thiazol-2-yl)-1H-indol-3-yl)carbamate (NAI59), a small molecule with outstanding therapeutic effectiveness to anti-pulmonary fibrosis, was developed as an autotaxin inhibitor candidate compound. To evaluate the pharmacokinetics and plasma protein binding of NAI59, a UPLC–MS/MS method was developed to quantify NAI59 in plasma and phosphate-buffered saline. The calibration curve linearity ranged from 9.95 to 1990.00 ng/mL in plasma. The accuracy was −6.8 to 5.9%, and the intra- and inter-day precision was within 15%. The matrix effect and recovery, as well as dilution integrity, were within the criteria. The chromatographic and mass spectrometric conditions were also feasible to determine phosphate-buffered saline samples, and it has been proved that this method exhibits good precision and accuracy in the range of 9.95–497.50 ng/mL in phosphate-buffered saline. This study is the first to determine the pharmacokinetics, absolute bioavailability, and plasma protein binding of NAI59 in rats using this established method. Therefore, the pharmacokinetic profiles of NAI59 showed a dose-dependent relationship after oral administration, and the absolute bioavailability in rats was 6.3%. In addition, the results of protein binding showed that the combining capacity of NAI59 with plasma protein attained 90% and increased with the increase in drug concentration.  相似文献   
5.
6.
Du  Zhong  Xu  Tao  Ren  Shuai 《Nonlinear dynamics》2021,104(1):683-689
Nonlinear Dynamics - In this paper, we investigate the interactions of the vector breathers for the coupled Hirota system with $$4\times 4$$ Lax pair. Firstly, we give the first-order breather...  相似文献   
7.
Luo  Hao  Chen  Long 《Mathematical Programming》2022,195(1-2):735-781
Mathematical Programming - Convergence analysis of accelerated first-order methods for convex optimization problems are developed from the point of view of ordinary differential equation solvers. A...  相似文献   
8.
9.
Incorporating nanoscale Si into a carbon matrix with high dispersity is desirable for the preparation of lithium-ion batteries (LIBs) but remains challenging. A space-confined catalytic strategy is proposed for direct superassembly of Si nanodots within a carbon (Si NDs⊂C) framework by copyrolysis of triphenyltin hydride (TPT) and diphenylsilane (DPS), where Sn atomic clusters created from TPT pyrolysis serve as the catalyst for DPS pyrolysis and Si catalytic growth. The use of Sn atomic cluster catalysts alters the reaction pathway to avoid SiC generation and enable formation of Si NDs with reduced dimensions. A typical Si NDs⊂C framework demonstrates a remarkable comprehensive performance comparable to other Si-based high-performance half LIBs, and higher energy densities compared to commercial full LIBs, as a consequence of the high dispersity of Si NDs with low lithiation stress. Supported by mechanic simulations, this study paves the way for construction of Si/C composites suitable for applications in future energy technologies.  相似文献   
10.
量子自旋液体是最近几年刚被人们证实除铁磁体、反铁磁体之外的第三种磁性类型,因其有望解释高温超导的运行机制、改变计算机硬盘信息存储方式而在物理、材料等领域备受关注。自旋阻挫作为量子自旋液体的最小单元可能是解开量子自旋液体诸多问题的钥匙,所以在磁学、电学研究领域再一次成为人们研究的热点。基于文献报道的三核铜配合物[Cu3(μ3-OH)(μ-OPz)3(NO3)2(H2O)2]·CH3OH(1),我们合成了三维金属有机框架配合物{[Ag(HOPz)Cu3(μ3-OH)(NO3)3(OPz)2Ag(NO3)]·6H2O}n(2)(HOPz=甲基(2-吡嗪基)酮肟),并从自旋阻挫的角度对二者磁性质进行对比和详细分析。磁化率数据表明自旋间有很强的反铁磁相互作用和反对称交换。通过包含各向同性和反对称交换的哈密顿算符对两者磁学数据进行拟合并研究其磁构关系,所获最佳拟合参数为:配合物1:Jav=-426 cm^-1,g⊥=1.83,g∥=2.00;配合物2:Jav=-401 cm^-1,g⊥=1.85,g∥=2.00。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号