首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
物理学   21篇
  2006年   4篇
  2004年   2篇
  2003年   4篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1969年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
The feasibility of an 84 GHz, 500 kW, CW gyrotron for ECRH on an experimental tokamak will be presented in this paper. Mode competition and mode selection procedures are carefully investigated by considering various candidate modes and the TE10,4 mode is chosen as the operating mode. A conventional cylindrical cavity resonator with weak input and output tapers and parabolic roundings is considered for interaction studies. Self-consistent, both single mode and time-dependent, calculations are carried out and power and efficiencies are computed for a typical set of beam parameters. The results show that an output power of well over 500 kW, CW and efficiency around 40% can be reached without a depressed collector.  相似文献   
2.
We developed a medium-power pulsed gyrotron equipped with diagnostic systems for studying low-frequency parasitic space-charge oscillations in the helical electron beam and the energy spectrum of electrons in the collector region. Methods for suppressing parasitic oscillations are proposed and tested. An explanation of the mechanism of suppression of these oscillations is given.  相似文献   
3.
This work reports about the influence of some window parameters, such as the mechanical tolerance of disk thickness, the variation of distance between two disks, and the frequency drift during gyrotron operation on the transmission characteristics of millimeter waves. Detailed calculations of the transmission characteristics for a single-disk gyrotron window and frequency tunable double-disk plasma fusion torus windows have been performed. The geometry of the window units has been optimized in order to obtain a suitable transmission characteristic, i.e. power reflection less than –20 dB within a frequency bandwidth of about 1 GHz around the chosen frequencies.  相似文献   
4.
The design of the quasi optical (q. o.) RF output system for the first industrial prototype of the European 170 GHz, 2 MW, CW coaxial cavity gyrotron for electron cyclotron heating and current drive in ITER has been verified at a low power level. Results of measurements with a high quality TE34,19-mode generator are in good agreement with the design calculations. This strengthens the confidence both to the employed design codes and to the manufacturing quality of the launcher and mirrors.  相似文献   
5.
The operation features of a TE10.4-mode gyrotron oscillator with a quasi-optical mode converter and a single-stage depressed collector at 140 GHz with an output power of 500 kW in long pulses of 0.2 s are presented. Measurements on long-pulse operation of the tube are described in detail, and the significant differences between short- and long-pulse operation concerning efficiency and output power are pointed out. The variation of frequency during a pulse and an irreversible frequency shift during long-pulse operation were measured and are discussed with respect to gyrotron design  相似文献   
6.
The operational features of a 140-GHz, transverse electric TE22,6 mode gyrotron oscillator with an advanced quasi-optical mode converter, a Brewster window, and a single-stage depressed collector at 140 GHz with an output power of 2.1 MW and an efficiency of 34% without depressed collector and 53% with depressed collector are presented. The high output power level is possible due to an almost reflectionless termination of the radio frequency (RF) beam line outside the tube. The operation of the TE22,6 mode gyrotron is described in detail, and the significant features for achieving the high-output power are pointed out  相似文献   
7.
Two 140 GHz gyrotrons with a single-step depressed collector have been operated. The different position of the isolating collector gap in the stray magnetic field causes the electron motion in the retarding region to be in one case adiabatic and in the other case nonadiabatic. The kind of motion within the retarding field influences strongly the behavior of the gyrotron with a depressed collector. In the case of nonadiabatic motion a significant amount of transverse momentum is given to the electrons reflected at the collector potential. This causes the reflected electrons to be trapped between the magnetic mirror and the collector. The electrons escape from the trap by diffusion across the magnetic field to the body of the tube thus contributing to the body current. Despite the high body current there is no observable influence of the collector voltage on the RF output power. In the case of adiabatic motion the reflected electrons do not gain a sufficient amount of transverse momentum to be trapped by the magnetic mirror. They pass the cavity toward the gun and they are trapped between the negative gun potential and the collector. The interaction with the RF field by electrons traveling through the cavity enhances the diffusion in the velocity space thus enabling the trapped electrons to overcome the potential barrier and escape toward the collector. Therefore the body current stays at low values since in this case the reflected electrons do not contribute to it. However, at higher collector voltages a reduction of RF power occurred and some noise in the electron beam was observed  相似文献   
8.
The development of a coaxial-cavity gyrotron operating in TE31,17 mode at 165 GHz is presented. The selection of the operating frequency and mode are based on the limitations imposed by the maximum held of the superconducting (sc) magnet at Forschungzentrum Karlsruhe, Institut fur Technische Physik (FZK), the use of the inverse-magnetron injection gun (IMIG) of the 140-GHz, TE28,16 coaxial gyrotron and the possibility of transforming the cavity mode to a whispering gallery mode (WGM) appropriate for the dual-beam quasioptical (q.o.) output coupler and the two output windows, which are foreseen for the next lateral output version of the tube. The tube with axial output has been tested at FZK to deliver maximum output power of 1.17 MW in the designed TE31,17 mode with 26.7% efficiency at 164.98 GHz. Maximum efficiency of 28.2% was achieved at 0.9-MW output power. The design operating point with output power 1.36 MW and 36.7% efficiency was net accessible because of beam instabilities at high electron-velocity ratio α, presumably caused due to high electron-velocity spread. Power at higher frequencies was also detected: 1.02 MW at 167.16 GHz in TE32,17 mode with 26.88 efficiency, 0.63 MW at 169.46 GHz in TE33,17 mode with 18% efficiency, and 0.35 MW at 171.80 GHz in TE31,17 mode with 13.3% efficiency  相似文献   
9.
The work reports about window design studies for both the JET EP ECRH project and the ASDEX-Upgrade ECRH system. Detailed calculations of the millimeter wave transmission characteristics for conventional single-disk windows, for frequency tunable double-disk windows and for ultra-broadband Brewster windows have been performed. The geometry of the window units has been optimized in order to obtain a suitable transmission characteristic, i.e. power reflection less than –20 dB within a frequency bandwidth of about 1 GHz around the chosen frequencies. In particular the influence of mechanical tolerances on the transmission characteristic has been investigated in order to specify the mechanical dimensions of the CVD-diamond disks and the window unit. In case of a Brewster window, the thickness has been optimized to get low power reflection over a wide angles range around the Brewster angle.  相似文献   
10.
The TE22,6-mode gyrotron operated at Forschungszentrum Karlsruhe at a frequency of 140 GHz has been investigated with respect to the behavior of different emitter materials, step tunability and reflections of the output beam. Two different materials of an emitter ring, LaB6 and a coated dispenser cathode, were used to test the features of the gyrotron. The output power was found to be independent from the cathode material, as long as a new emitter ring was used. Aging of the emitter led to a slightly decreased output power. The gyrotron also was operated with a Brewster window. The broad-band characteristics of this window made it possible to measure the neighboring frequencies in a frequency range extending from 114 to 166 GHz. Only a slight dependence of the output power has been found over the whole frequency range. The Brewster window also allows us to investigate the influence of reflections on the output power. A strong decrease of the output power was found even for very small reflections. Tilting the power calorimeter (the reflections were measured to be less than 1%) increased the output power by about 20% to 1.6 MW at an efficiency of 36.2%. With a collector depression voltage of 35 kV for energy recovery, efficiencies of 60% at the above-mentioned output power were obtained  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号