首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
物理学   28篇
  2018年   1篇
  2011年   5篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2003年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1982年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
2.
The relativistic mean-field models tested in previous works against nuclear matter experimental values,critical parameters and macroscopic stellar properties are revisited and used in the evaluation of the symmetry energyγ parameter obtained in three different ways. We have checked that, independent of the choice made to calculate theγ values, a trend of linear correlation is observed between γ and the symmetry energy(S_0) and a more clear linear relationship is established between γ and the slope of the symmetry energy(L_0). These results directly contribute to the arising of other linear correlations between γ and the neutron star radii of R_(1.0) and R_(1.4), in agreement with recent findings. Finally, we have found that short-range correlations induce two specific parametrizations, namely,IU-FSU and DD-MEδ, simultaneously compatible with the neutron star mass constraint of 1.93≤M_(max)/M_☉≤2.05 and with the overlap band for the L_0 ×S_0 region, to present γ in the range of γ=0.25±0.05.  相似文献   
3.
This Letter shows quantitatively that the magnitude of the EMC effect measured in electron deep inelastic scattering at intermediate x(B), 0.35≤x(B)≤0.7, is linearly related to the short range correlation (SRC) scale factor obtained from electron inclusive scattering at x(B)≥1. The observed phenomenological relationship is used to extract the ratio of the deuteron to the free pn pair cross sections and F(2)(n)/F(2)(p), the ratio of the free neutron to free proton structure functions. We speculate that the observed correlation is because both the EMC effect and SRC are dominated by the high virtuality (high momentum) nucleons in the nucleus.  相似文献   
4.
5.
We investigated simultaneously the 12C(e,e'p) and 12C(e,e'pp) reactions at Q2=2 (GeV/c)2, xB=1.2, and in an (e, e'p) missing-momentum range from 300 to 600 MeV/c. At these kinematics, with a missing momentum greater than the Fermi momentum of nucleons in a nucleus and far from the delta excitation, short-range nucleon-nucleon correlations are predicted to dominate the reaction. For (9.5+/-2)% of the 12C(e,e'p) events, a recoiling partner proton was observed back-to-back to the 12C(e,e'p) missing-momentum vector, an experimental signature of correlations.  相似文献   
6.
We analyze recent data from high-momentum-transfer (p, pp) and (p, ppn) reactions on carbon. For this analysis, the two-nucleon short-range correlation (NN-SRC) model for backward nucleon emission is extended to include the motion of the NN pair in the mean field. The model is found to describe major characteristics of the data. Our analysis demonstrates that the removal of a proton from the nucleus with initial momentum 275-550 MeV/c is 92(+8/-18) % of the time accompanied by the emission of a correlated neutron that carries momentum roughly equal and opposite to the initial proton momentum. This indicates that the probabilities of pp or nn SRCs in the nucleus are at least a factor of 6 smaller than that of pn SRCs. Our result is the first estimate of the isospin structure of NN-SRCs in nuclei, and may have important implication for modeling the equation of state of asymmetric nuclear matter.  相似文献   
7.
8.
9.
10.
High-precision measurements of the proton elastic form-factor ratio, mu pG p E/G p M, have been made at four-momentum transfer, Q2, values between 0.2 and 0.5 GeV2. The new data, while consistent with previous results, clearly show a ratio less than unity and significant differences from the central values of several recent phenomenological fits. By combining the new form-factor ratio data with an existing cross-section measurement, one finds that in this Q2 range the deviation from unity is primarily due to G p E being smaller than expected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号