首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   1篇
物理学   5篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2004年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Biodegradable nanoparticles loaded with anticancer drug paclitaxel and appropriately coated with polyvinyl alcohol (PVA), polyethylene glycol (PEG) as well as d--tocopheryl polyethylene glycol 1000 succinate (TPGS) were produced and characterised by various analysis techniques such as laser light scattering (LLS) for particle size and size distribution, scanning electron microscopy (SEM) and atomic force microscopy (AFM) for particle morphology, X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared-Photoacoustic Spectroscopy (FTIR-PAS) for surface chemistry, and high performance liquid chromatography (HPLC) for drug encapsulation efficiency (EE) and in vitro release kinetics. The emphasis was given to the possible effects of surface coating on the physicochemical and pharmaceutical properties of paclitaxel loaded nanoparticles. It was found that the type and amount of the surfactant could significantly affect the drug EE in the nanoparticles, the particles characteristics and their in vitro release behaviour. The surfactants dominated on the nanoparticles surface and the coated nanoparticles displayed in spherical shape with relative smooth surface within the resolution scope of the equipment. The particle size and size distribution showed close relation to the surface coating, which may also be responsible for the drug encapsulation efficiency and the in vitro release kinetics. A favourable formulation of drug loaded nanoparticles of desired properties could be obtained by optimising the fabrication parameters.  相似文献   
2.
Abstract The coupled effects of vacancy clusters (VCs), temperature, wire size, and geometry on the mechanical and fracture behaviors of defective silicon nanowires (Si NWs) were investigated using molecular dynamics modeling with Tersoff potential. The formation energies (E v ) of a monovacancy (3.933 eV) and a tetrahedron vacancy (10.189 eV) obtained in this study agree well with experimental results and ab initio calculation. Simulation results show that the slip deformations of defective Si NWs are triggered at the wire’s surface and edge due to the number of dangling bonds on the wire’s surface being much greater than that inside a vacancy defect. VC defects barely affect to the value of Young’s modulus, but substantially weaken the ultimate strength of wires with a small cross-sectional size. With decreasing wire size and increasing operation temperature, significant reductions in Young’s modulus and fracture strength were observed. The average Young’s modulus for square NWs was about 3.7 % higher than that of wires with a circular shape due to the surface facet effect. A brittle-to-ductile transition (BDT) occurred for [001]-oriented Si NWs with a lateral size≤5.43 nm and an operation temperature T≥300 K.  相似文献   
3.
Newly discovered micro and nanoscale cold welding has already exhibited great potential in up-to-date nanofabrication processes. In this paper, the atomistic-scale pressure welding processes for metallic nanowires (NWs) are studied using embedded-atom molecular dynamics (MD) simulations. The mechanical behavior and structural evolution of the metallic nanowires, including Au, Ag, and Cu materials that experienced a mechanical stretching break and solid-phase pressure welding process, were thoroughly investigated. The welding temperatures (T w) ranging from 100 to 900 K were systemically examined for the effects of welding strength. The ratio of welding strength, R ws, defined as the ratio between the welding strength and the original yield strength of NWs, was employed to identify the welding quality. Simulation results show that the R ws of Au NWs is better than those of Ag and Cu welded at room temperature; however, for welding at high temperatures (600?C900?K), the R ws value of Ag NWs is the best. The R ws values of Au NWs using cold welding show less variance than with high temperature welding, reflecting that the application of cold welding on the Au NWs is highly feasible. The R ws values for NWs with small diameters are generally higher than those with large diameters. The breaking places of the tensile test for the post-welded NWs did not occur at the welding region, indicating that the broken wires can be robustly reconnected through solid-phase mechanically-assisted welding devices.  相似文献   
4.
Extensive atomistic simulations of the thermal stretching of defective nanowires (NWs) were performed using the embedded-atom molecular dynamics modeling approach. The nucleation and propagation of dislocations are described via quantitative dislocation-based analyses. The investigation focuses on the coupled effects of various vacancy cluster (VC) defects, operating temperature, and wire cross-sectional area on the mechanical properties and plastic deformations of defective NWs. With increasing internal stress of a stretched wire, a rapidly moving dislocation loop that transferred atoms to fill up the original vacancy cluster before the wire yielded was found (i.e. it carried the vacancies away from the inside of the wire and formed a notch at the wire edge). The heterogeneous nucleation of dislocations from the notch site propagated along the {111}〈112〉 partial dislocations and formed stacking faults or perfect dislocations on the {111} activated planes. Simulation results show a decreasing yield strength with increasing VC size for a given wire sectional area and temperature. Quasi-linear decreasing Young’s moduli were observed with increasing operation temperature. For a given operation temperature, NW Young’s modulus increased with increasing NW size. Two typical deformation regimes under various operation temperatures were found: (i) a high-temperature-induced pre-melting phenomenon and a thermal softening effect caused low-stress plastic flow and rapid pillar-necking deformation, and (ii) step-wise glides, slip bands, and cross-slips proceeded along the activated glide planes in the low-temperature hard-brittle structure. These two regimes were thoroughly characterized via the evolutions of microscopic dislocations and the changes of true stress. For operation at high temperatures, the ultra-thin 1/5-type pentagonal ring chains exhibit a relatively robust structure, which can potentially be used as building blocks and components for high-temperature nanoelectromechanical systems (NEMS) devices in the future.  相似文献   
5.
6.
A microscopic insight of interfacial spallation and recombination behaviors at multilayer thin-film interface induced by incident femtosecond pulsed laser is presented in this paper. Such two different aforementioned behaviors are investigated via the thermodynamic trajectories obtained by using standard Lennard-Jones (L-J) molecular dynamics (MD) simulation. Based on the simulation results, the interfacial damages of multilayer thin film are dominated by a critical threshold that induces an extraordinary expansive dynamics and phase transitions leading to the structural softened and tensile spallation at interface. The critical damage threshold is evaluated at around 8.5 J/m2 which governs the possible occurrence of two different regimes, i.e. interfacial spallaiton and recombination. In interfacial damage region, quasi-isothermal thermodynamic trajectories can be observed after the interfacial spallation occurs. Moreover, the result of thermodynamic trajectories analyses indicates that, the relaxation of pressure wave may cause the over-heated interfacial zone to reduce volumetric density, thus leading to structural softness and even weaken interfacial structural strength. The crucial effect leading to the phenomenon of low tension spallation is identified.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号