首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15816篇
  免费   510篇
  国内免费   69篇
化学   9905篇
晶体学   241篇
力学   578篇
数学   1864篇
物理学   3807篇
  2023年   125篇
  2022年   204篇
  2021年   278篇
  2020年   295篇
  2019年   326篇
  2018年   268篇
  2017年   248篇
  2016年   450篇
  2015年   372篇
  2014年   485篇
  2013年   970篇
  2012年   1036篇
  2011年   1090篇
  2010年   624篇
  2009年   560篇
  2008年   822篇
  2007年   837篇
  2006年   739篇
  2005年   678篇
  2004年   582篇
  2003年   507篇
  2002年   427篇
  2001年   221篇
  2000年   191篇
  1999年   171篇
  1998年   137篇
  1997年   143篇
  1996年   191篇
  1995年   139篇
  1994年   164篇
  1993年   180篇
  1992年   174篇
  1991年   131篇
  1990年   143篇
  1989年   131篇
  1988年   111篇
  1987年   102篇
  1985年   134篇
  1984年   167篇
  1983年   121篇
  1982年   140篇
  1981年   141篇
  1980年   147篇
  1979年   127篇
  1978年   123篇
  1977年   128篇
  1976年   107篇
  1975年   94篇
  1974年   89篇
  1973年   100篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
4D printing is an exciting branch of additive manufacturing. It relies on established 3D printing techniques to fabricate objects in much the same way. However, structures which fall into the 4D printed category have the ability to change with time, hence the “extra dimension.” The common perception of 4D printed objects is that of macroscopic single-material structures limited to point-to-point shape change only, in response to either heat or water. However, in the area of polymer 4D printing, recent advancements challenge this understanding. A host of new polymeric materials have been designed which display a variety of wonderful effects brought about by unconventional stimuli, and advanced additive manufacturing techniques have been developed to accommodate them. As a result, the horizons of polymer 4D printing have been broadened beyond what was initially thought possible. In this review, we showcase the many studies which evolve the very definition of polymer 4D printing, and reveal emerging areas of research integral to its advancement.  相似文献   
2.

The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a massive viral disease outbreak of international concerns. The present study is mainly intended to identify the bioactive phytocompounds from traditional antiviral herb Houttuynia cordata Thunb. as potential inhibitors for three main replication proteins of SARS-CoV-2, namely Main protease (Mpro), Papain-Like protease (PLpro) and ADP ribose phosphatase (ADRP) which control the replication process. A total of 177 phytocompounds were characterized from H. cordata using GC–MS/LC–MS and they were docked against three SARS-CoV-2 proteins (receptors), namely Mpro, PLpro and ADRP using Epic, LigPrep and Glide module of Schrödinger suite 2020-3. During docking studies, phytocompounds (ligand) 6-Hydroxyondansetron (A104) have demonstrated strong binding affinity toward receptors Mpro (PDB ID 6LU7) and PLpro (PDB ID 7JRN) with G-score of???7.274 and???5.672, respectively, while Quercitrin (A166) also showed strong binding affinity toward ADRP (PDB ID 6W02) with G-score -6.788. Molecular Dynamics Simulation (MDS) performed using Desmond module of Schrödinger suite 2020–3 has demonstrated better stability in the ligand–receptor complexes A104-6LU7 and A166-6W02 within 100 ns than the A104-7JRN complex. The ADME-Tox study performed using SwissADMEserver for pharmacokinetics of the selected phytocompounds 6-Hydroxyondansetron (A104) and Quercitrin (A166) demonstrated that 6-Hydroxyondansetron passes all the required drug discovery rules which can potentially inhibit Mpro and PLpro of SARS-CoV-2 without causing toxicity while Quercitrin demonstrated less drug-like properties but also demonstrated as potential inhibitor for ADRP. Present findings confer opportunities for 6-Hydroxyondansetron and Quercitrin to be developed as new therapeutic drug against COVID-19.

Graphic abstract
  相似文献   
3.
Nitrene transfer reactions have emerged as one of the most powerful and versatile ways to insert an amine function to various kinds of hydrocarbon substrates. However, the mechanisms of nitrene generation have not been studied in depth albeit their formation is taken for granted in most cases without definitive evidence of their occurrence. In the present work, we compare the generation of tosylimido iron species and NTs transfer from FeII and FeIII precursors where the metal is embedded in a tetracarbene macrocycle. Catalytic nitrene transfer to reference substrates (thioanisole, styrene, ethylbenzene and cyclohexane) revealed that the same active species was at play, irrespective of the ferrous versus ferric nature of the precursor. Through combination of spectroscopic (UV-visible, Mössbauer), ESI-MS and DFT studies, an FeIV tosylimido species was identified as the catalytically active species and was characterized spectroscopically and computationally. Whereas its formation from the FeII precursor was expected by a two-electron oxidative addition, its formation from an FeIII precursor was unprecedented. Thanks to a combination of spectroscopic (UV-visible, EPR, Hyscore and Mössbauer), ESI-MS and DFT studies, we found that, when starting from the FeIII precursor, an FeIII tosyliodinane adduct was formed and decomposed into an FeV tosylimido species which generated the catalytically active FeIV tosylimide through a comproportionation process with the FeIII precursor.  相似文献   
4.
Journal of Optimization Theory and Applications - A framework for monitoring a target modeled as Dubins car using multiple UAVs is proposed. The UAVs are subject to minimum and maximum speed,...  相似文献   
5.

Soil–water retention curve (SRWC), also called soil moisture characteristic, is used for simulation models of soil water storage or soil aggregate stability. The present study addresses the modeling of SRWC with particular attention paid to hysteresis effects of water filling and draining the pores attributed to ink-bottle effects. For that purpose, an idealized pore size distribution previously developed for predicting water sorption isotherms on cementitious materials, and which can consider the double porosity structure of soils, is used. The input data of the model are assessed only from mercury intrusion porosimetry tests (MIP) and from grain size distribution (GSD). The hysteretic behavior of SRWC is reproduced in a satisfactory way. The model can also predict the specific surface area.

  相似文献   
6.
The health monitoring has been studied to ensure integrity of design of engine structure by detection, quantification, and prediction of damages. Early detection of faults may allow the downtime of maintenance to be rescheduled, thus preventing sudden shutdown of machines. In cylinder pressure developed, vibrations and noise emissions data provide a rich source of information about condition of engines. Monitoring of vibrations and noise emissions are novel non-intrusive methodologies for which positioning of various transducers are important issue. The presented work shows applicability of these diagnosis methodologies adopted in case of diesel engines. The effects of changing various fuel injection parameters was analyzed. Scope of using non-intrusive technique has been analyzed by changing locations of microphone. Novelty of this worklies in exploring signal processing methods for various locations around the engine test set up. Various frequency ranges of contributing noise and vibration sources were identified. Time-Frequency analysis showed the onset of various cyclic. Based on the identification of various frequency bands, it is possible to device suitable filters in order to extract more information.  相似文献   
7.
Herein, we report a Mott-Schottky catalyst by entrapping cobalt nanoparticles inside the N-doped graphene shell (Co@NC). The Co@NC delivered excellent oxygen evolution activity with an overpotential of merely 248 mV at a current density of 10 mA cm–2 with promising long-term stability. The importance of Co encapsulated in NC has further been demonstrated by synthesizing Co nanoparticles without NC shell. The synergy between the hexagonal close-packed (hcp) and face-centered cubic (fcc) Co plays a major role to improve the OER activity, whereas the NC shell optimizes the electronic structure, improves the electron conductivity, and offers a large number of active sites in Co@NC. The density functional theory calculations have revealed that the hcp Co has a dominant role in the surface reaction of electrocatalytic oxygen evolution, whereas the fcc phase induces the built-in electric field at the interfaces with N-doped graphene to accelerate the H+ ion transport.  相似文献   
8.
A unique nickel/organic photoredox co-catalyzed asymmetric reductive cross-coupling between α-chloro esters and aryl iodides is developed. This cross-electrophile coupling reaction employs an organic reductant (Hantzsch ester), whereas most reductive cross-coupling reactions use stoichiometric metals. A diverse array of valuable α-aryl esters is formed under these conditions with high enantioselectivities (up to 94 %) and good yields (up to 88 %). α-Aryl esters represent an important family of nonsteroidal anti-inflammatory drugs. This novel synergistic strategy expands the scope of Ni-catalyzed reductive asymmetric cross-coupling reactions.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号