首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
力学   3篇
物理学   5篇
  2012年   1篇
  2008年   2篇
  2007年   1篇
  2004年   1篇
  1997年   1篇
  1994年   1篇
  1986年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Target areal density (rhoR) asymmetries in OMEGA direct-drive spherical implosions are studied. The rms variation / for low-mode-number structure is approximately proportional to the rms variation of on-target laser intensity / with an amplification factor of approximately 1/2(C(r)-1), where C(r) is the capsule convergence ratio. This result has critical implications for future work on the National Ignition Facility as well as OMEGA.  相似文献   
2.
Direct-drive inertial confinement fusion (ICF) is expected to demonstrate high gain on the National Ignition Facility (NIF) in the next decade and is a leading candidate for inertial fusion energy production. The demonstration of high areal densities in hydrodynamically scaled cryogenic DT or D2 implosions with neutron yields that are a significant fraction of the “clean” 1-D predictions will validate the ignition-equivalent direct-drive target performance on the OMEGA laser at the Laboratory for Laser Energetics (LLE). This paper highlights the recent experimental and theoretical progress leading toward achieving this validation in the next few years. The NIF will initially be configured for X-ray drive and with no beams placed at the target equator to provide a symmetric irradiation of a direct-drive capsule. LLE is developing the “polar-direct-drive” (PDD) approach that repoints beams toward the target equator. Initial 2-D simulations have shown ignition. A unique “Saturn-like” plastic ring around the equator refracts the laser light incident near the equator toward the target, improving the drive uniformity. LLE is currently constructing the multibeam, 2.6-kJ/beam, petawatt laser system OMEGA EP. Integrated fast-ignition experiments, combining the OMEGA EP and OMEGA Laser Systems, will begin in FY08.  相似文献   
3.
This paper presents an anisotropic mesh adaptation method applied to industrial combustion problems. The method is based on a measure of the distance between two Riemannian metrics called metric non‐conformity. This measure, which can be used to build a cost function to adapt meshes comprising several types of mesh elements, provides the basis for a generic mesh adaptation approach applicable to various types of physical problems governed by partial differential equations. The approach is shown to be applicable to industrial combustion problems, through the specification of a target metric computed as the intersection of several Hessian matrices reconstructed from the main variables of the governing equations. Numerical results show that the approach is cost effective in that it can drastically improve the prediction of temperature and species distributions in the flame region of a combustor while reducing computational cost. The results can be used as a basis for pollutant prediction models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
4.
The purpose of this work is to introduce and validate a new staggered control volume method for the simulation of 2D/axisymmetric incompressible flows. The present study introduces a numerical procedure for solving the Navier–Stokes equations using the primitive variable formulation. The proposed method is an extension of the staggered grid methodology to unstructured triangular meshes for a control volume approach which features ease of handling of irregularly shaped domains. Two alternative elements are studied: transported scalars are stored either at the sides of an element or at its vertices, while the pressure is always stored at the centre of an element. Two interpolation functions were investigated for the integration of the momentum equations: a skewed mass-weighted upwind function and a flow-oriented exponential shape function. The momentum equations are solved over the covolume of a side or of a vertex and the pressure–velocity coupling makes use of a localized linear reconstruction of the discontinuous pressure field surrounding an element in order to obtain the pressure gradient terms. The pressure equation is obtained through a discretization of the continuity equation which uses the triangular element itself as the control volume. The method is applied to the simulation of the following test cases: backward-facing step flow, flow over a two-dimensional obstacle and flow in a pipe with sudden contraction of cross-sectional area. All numerical investigations are compared with experimental data from the literature. A grid convergence and error analysis study is also carried out for flow in a driven cavity. Results compared favourably with experimental data and so the new control volume scheme is deemed well suited for the prediction of incompressible flows in complex geometries. © 1997 John Wiley & Sons, Ltd.  相似文献   
5.
The first observation of ignition-relevant areal-density deuterium from implosions of capsules with cryogenic fuel layers at ignition-relevant adiabats is reported. The experiments were performed on the 60-beam, 30-kJUV OMEGA Laser System [T. R. Boehly, Opt. Commun. 133, 495 (1997)10.1016/S0030-4018(96)00325-2]. Neutron-averaged areal densities of 202+/-7 mg/cm2 and 182+/-7 mg/cm2 (corresponding to estimated peak fuel densities in excess of 100 g/cm3) were inferred using an 18-kJ direct-drive pulse designed to put the converging fuel on an adiabat of 2.5. These areal densities are in good agreement with the predictions of hydrodynamic simulations indicating that the fuel adiabat can be accurately controlled under ignition-relevant conditions.  相似文献   
6.
A control volume finite element method that uses a triangular grid has been applied for solving confined turbulent swirling flows. To treat the velocity-pressure coupling, the vorticity-streamfunction formulation has been used. For turbulence effects the k-? model has been adopted. Consistent with the use of wall functions in the near-wall regions, a boundary condition for the calculation of the vorticity at computational boundaries is proposed and used effectively. The discretized equations are obtained by making use of an exponential interpolation function. Its use has been beneficial in reducing numerical diffusion. Comparisons of the current predictions with available experimental and numerical data from the literature showed generally fair agreement.  相似文献   
7.
8.
The compression of planar plastic targets was studied with x-ray radiography in the range of laser intensities of I approximately 0.5 to 1.5x10(15) W/cm2 using square (low-compression) and shaped (high-compression) pulses. Two-dimensional simulations with the radiative hydrocode DRACO show good agreement with measurements at laser intensities up to I approximately 10(15) W/cm2. These results provide the first experimental evidence for low-entropy, adiabatic compression of plastic shells in the laser intensity regime relevant to direct-drive inertial confinement fusion. A density reduction near the end of the drive at a high intensity of I approximately 1.5x10(15) W/cm2 has been correlated with the hard x-ray signal caused by hot electrons from two-plasmon-decay instability.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号