首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学   1篇
物理学   14篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
In many realizations of electron spin qubits the dominant source of decoherence is the fluctuating nuclear spin bath of the host material. The slowness of this bath lends itself to a promising mitigation strategy where the nuclear spin bath is prepared in a narrowed state with suppressed fluctuations. Here, this approach is realized for a two-electron spin qubit in a GaAs double quantum dot and a nearly tenfold increase in the inhomogeneous dephasing time T?* is demonstrated. Between subsequent measurements, the bath is prepared by using the qubit as a feedback loop that first measures its nuclear environment by coherent precession, and then polarizes it depending on the final state. This procedure results in a stable fixed point at a nonzero polarization gradient between the two dots, which enables fast universal qubit control.  相似文献   
6.
We report the observation of an unpredictable behavior of a simple, two-path, electron interferometer. Utilizing an electronic analog of the well-known optical Mach-Zehnder interferometer, with current carrying edge channels in the quantum Hall effect regime, we measured high contrast Aharonov-Bohm (AB) oscillations. Surprisingly, the amplitude of the oscillations varied with energy in a lobe fashion, namely, with distinct maxima and zeros (namely, no AB oscillations) in between. Moreover, the phase of the AB oscillations was constant throughout each lobe period but slipped abruptly by pi at each zero. The periodicity of the lobes defines a new energy scale, which may be a general characteristic of quantum coherence of interfering electrons.  相似文献   
7.
Kondo correlation in a spin polarized quantum dot (QD) results from the dynamical formation of a spin singlet between the dot's net spin and a Kondo cloud of electrons in the leads, leading to enhanced coherent transport through the QD. We demonstrate here significant dephasing of such transport by coupling the QD and its leads to potential fluctuations in a nearby "potential detector." The qualitative dephasing is similar to that of a QD in the Coulomb blockade regime in spite of the fact that the mechanism of transport is quite different. A much stronger than expected suppression of coherent transport is measured, suggesting that dephasing is induced mostly in the "Kondo cloud" of electrons within the leads and not in the QD.  相似文献   
8.
We report on the phase measurements on a quantum dot containing a single electron in the Kondo regime. Transport takes place through a single orbital state. Although the conductance is far from the unitary limit, we measure directly, for the first time, a transmission phase as theoretically predicted of pi/2. As the dot's coupling to the leads is decreased, with the dot entering the Coulomb blockade regime, the phase reaches a value of pi. Temperature shows little effect on the phase behavior in the range 30-600 mK, even though both the two-terminal conductance and amplitude of the Aharonov-Bohm oscillations are strongly affected. These results also suggest that previous phase measurements involved transport through more than a single level.  相似文献   
9.
Resonant tunneling through two identical potential barriers renders them transparent, as particle trajectories interfere coherently. Here we realize resonant tunneling in a quantum dot (QD), and show that detection of electron trajectories renders the dot nearly insulating. Measurements were made in the integer quantum Hall regime, with the tunneling electrons in an inner edge channel coupled to detector electrons in a neighboring outer channel, which was partitioned. Quantitative analysis indicates that just a few detector electrons completely dephase the QD.  相似文献   
10.
We have used a recently developed surface force balance to measure, with extreme sensitivity, both lateral and normal forces between interacting surfaces, for the case of simple liquids and particularly with surface-attached polymers. The presence of polymers on the surfaces reduces drastically the force required to maintain them in sliding motion, under a given normal load, relative to the bare surface case. We believe this is due to the long range steric repulsion which can sustain a large normal load while maintaining a very fluid interfacial layer. The effect is much more marked for end-tethered chains in a good solvent than for adsorbed chains in a θ-solvent. This is attributed to the different extents of interpenetration of the compressed polymer layers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号