首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   2篇
化学   27篇
力学   1篇
数学   4篇
物理学   33篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   3篇
  2010年   1篇
  2008年   5篇
  2007年   3篇
  2006年   6篇
  2003年   1篇
  1992年   1篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1969年   1篇
  1967年   1篇
  1907年   2篇
  1882年   1篇
  1881年   1篇
  1880年   1篇
  1876年   2篇
  1874年   1篇
排序方式: 共有65条查询结果,搜索用时 15 毫秒
1.
Recent developments in desorption/ionisation mass spectrometry techniques have made their application to biological analysis a realistic and successful proposition. Developments in primary ion source technology, mainly through the advent of polyatomic ion beams, have meant that the technique of secondary ion mass spectrometry (SIMS) can now access the depths of information required to allow biological imaging to be a viable option.Here the role of the primary ion C60+ is assessed with regard to molecular imaging of lipids and pharmaceuticals within tissue sections. High secondary ion yields and low surface damage accumulation are demonstrated on both model and real biological samples, indicating the high secondary ion efficiency afforded to the analyst by this primary ion when compared to other cluster ion beams used in imaging. The newly developed 40 keV C60+ ion source allows the beam to be focused such that high resolution imaging is demonstrated on a tissue sample, and the greater yields allow the molecular signal from the drug raclopride to be imaged within tissue section following in vivo dosing.The localisation shown for this drug alludes to issues regarding the chemical environment affecting the ionisation probability of the molecule; the importance of this effect is demonstrated with model systems and the possibility of using laser post-ionisation as a method for reducing this consequence of bio-sample complexity is demonstrated and discussed.  相似文献   
2.
3.
4.
5.
6.
7.
8.
A novel application of time-of-flight secondary ion mass spectrometry (ToF-SIMS) with continuous Ar cluster beams to peptide analysis was investigated. In order to evaluate peptide structures, it is necessary to detect fragment ions related to multiple neighbouring amino acid residues. It is, however, difficult to detect these using conventional ToF-SIMS primary ion beams such as Bi cluster beams. Recently, C60 and Ar cluster ion beams have been introduced to ToF-SIMS as primary ion beams and are expected to generate larger secondary ions than conventional ones. In this study, two sets of model peptides have been studied: (des-Tyr)-Leu-enkephalin and (des-Tyr)-Met-enkephalin (molecular weights are approximately 400 Da), and [Asn1 Val5]-angiotensin II and [Val5]-angiotensin I (molecular weights are approximately 1,000 Da) in order to evaluate the usefulness of the large cluster ion beams for peptide structural analysis. As a result, by using the Ar cluster beams, peptide molecular ions and large fragment ions, which are not easily detected using conventional ToF-SIMS primary ion beams such as Bi3 +, are clearly detected. Since the large fragment ions indicating amino acid sequences of the peptides are detected by the large cluster beams, it is suggested that the Ar cluster and C60 ion beams are useful for peptide structural analysis.  相似文献   
9.
10.
Recently a new di-gold(I) organometallic complex [1,3-(Ph(3)PAu)(2)-C(6)H(4)] (KF0101) has been synthesised and found to exhibit cytotoxic activity in vitro. Subsequently it has been demonstrated that KF0101 shows little or no cross-resistance against a number of the cisplatin resistant ovarian cancer cell lines in vitro suggesting a different mode of action for the drug. In this study, syncrotron radiation infrared microspectroscopy (SR-IRMS) has been used on drug treated single A2780 cells in order to determine if this different mode of action can be identified spectroscopically. The aim of the study was to establish: (i) if single cell SR-IRMS could be used to give insight into the cellular response on treatment with different cytotoxic agents relative to non-treated cells (control) and (ii) that if the cytotoxic drugs elicit a different biochemical response these responses could be distinguished from each other. The most striking features obtained after Principal Components Analysis (PCA) of Resonant Mie Scattering (RMieS) corrected single cell spectra of drug treated ovarian A2780 cells are: (i) The spectra obtained for the control are quite heterogeneous and several hundred spectra are required to adequately define the nature of the control; (ii) after drug treatment at the IC50 level for 24 h with cisplatin, KF0101, methotrexate, paclitaxel or 5-fluorouracil the cell spectra, as represented on a PCA scores plot, generally concentrate in certain well defined areas of the control, there are however a small number of spectra that fall outside of the area defined by the control; and (iii) a differentiation between cell spectra obtained on treatment with different drugs is observed which fits well with different in vitro cell culture behaviour and a flow cytometry cell cycle analysis of the control and drug treated cells. Inspection of the loading plots shows that PC1 is essentially the same for all plots and reflects changes in cell biochemistry related to the cell cycle. PC2, however, on comparison of the control versus cisplatin or cisplatin versus KF0101 is indicative of differences induced by drug treatment and has been termed as cell cycle-plus behaviour. These data are shown to be consistent with that obtained using bench-top IRMS by averaging a number of single cell spectra and carrying out a PCA, but SR-IRMS offers more insight into how the drug is affecting the cell population. More importantly, this approach enables the influence of the cell cycle on both the control and drug treated samples to be taken into consideration when evaluating the drug-cell interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号