首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
化学   3篇
物理学   19篇
  2019年   1篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1980年   1篇
  1973年   1篇
  1934年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
In this paper, we study the dynamics of a massive aluminum Z-pinch plasma load and evaluate its performance as a soft X-ray radiator. A radiation hydrodynamic model self-consistently driven by a circuit describes the dynamics. Comparisons are made for the K- and L-shell soft X-ray emission as a function of the ionization dynamic model. The ionization dynamic models are represented by: 1) a time-dependent nonequilibrium (NEQ) model, 2) a collisional radiative equilibrium (CRE) model, and 3) a local thermodynamic equilibrium (LTE) model. For all three scenarios the radiation is treated 1) in the free streaming optically thin approximation where the plasma is treated as a volume emitter and 2) in the optically thick regime where the opacity for the lines and continuum is self-consistently calculated online and the radiation is transported through the plasma. Each simulation is carried out independently to determine the sensitivity of the implosion dynamics to the ionization and radiation model, i.e., how the ionization dynamic model affects the radiative yield and emission spectra. Results are presented for the L- and K-shell radiation yields and emission spectra as a function of photon energy from 10 eV to 10 keV. Also, departure coefficients from LTE are presented for selected levels and ionization stages  相似文献   
2.
Nested-wire array experiments have been conducted at the 7 MA level with 150 ns implosion times from an outer diameter of 40 mm. Analysis of spectral data indicates that material from the outer array preferentially occupies the high temperature core of the stagnated pinch independent of the interwire gap in the range of 1.1 to 4.5 mm.  相似文献   
3.
In numerous experiments, magnetic energy coupled to strongly radiating Z-pinch plasmas exceeds the thermalized kinetic energy, sometimes by a factor of 2-3. We demonstrate that the enhanced energy coupling may be due to the buoyancy rise of toroidal magnetic flux tubes converging to the axis through the unstable pinch plasma. We derive an explicit formula for the enhanced dissipation rate and apply this formula to reconsider an old problem of power balance in a steady-state Z pinch, and then to analyze a new challenge of producing K-shell 3 to 10 keV radiation in long-pulse Z-pinch implosions.  相似文献   
4.
Pulsed power driven metallic wire-array Z pinches are the most powerful and efficient laboratory x-ray sources. Furthermore, under certain conditions the soft x-ray energy radiated in a 5 ns pulse at stagnation can exceed the estimated kinetic energy of the radial implosion phase by a factor of 3 to 4. A theoretical model is developed here to explain this, allowing the rapid conversion of magnetic energy to a very high ion temperature plasma through the generation of fine scale, fast-growing m = 0 interchange MHD instabilities at stagnation. These saturate nonlinearly and provide associated ion viscous heating. Next the ion energy is transferred by equipartition to the electrons and thus to soft x-ray radiation. Recent time-resolved iron spectra at Sandia confirm an ion temperature Ti of over 200 keV (2 x 10(9) degrees), as predicted by theory. These are believed to be record temperatures for a magnetically confined plasma.  相似文献   
5.
Axially localized NaF dopants are coated onto Al cylindrical wire arrays in order to act as spectroscopic tracers in the stagnated z-pinch plasma. Non-local-thermodynamic-equilibrium kinetic models fit to Na K-shell lines provide an independent measurement of the density and temperature that is consistent with spectroscopic analysis of K-shell emissions from Al and an alloyed Mg dopant. Axial transport of the Na dopant is observed, enabling quantitative study of instabilities in dense z-pinch plasmas.  相似文献   
6.
Doubling the number of tungsten wires from 120 to 240, keeping the mass fixed, increased the radiated X-ray power relative to the electrical power at the insulator stack of the Z accelerator by (35±15)% for 8.75- and 20-mm radii Z-pinch wire arrays. One-dimensional radiation magneto hydrodynamic calculations suggest that the arrays were operating in a quasi “plasma-shed” regime, where the plasma generated by the individual wires partially merge prior to the inward implosion of the entire array  相似文献   
7.
8.
We present the first comprehensive study of high wire-number, wire-array Z-pinch dynamics at 14-18 MA using x-ray backlighting and optical shadowgraphy diagnostics. The cylindrical arrays retain slowly expanding, dense wire cores at the initial position up to 60% of the total implosion time. Azimuthally correlated instabilities at the array edge appear during this stage which continue to grow in amplitude and wavelength after the start of bulk motion, resulting in measurable trailing mass that does not arrive on axis before peak x-ray emission.  相似文献   
9.
Experiments performed on the 8-MA Saturn accelerator to investigate the effects of interwire gap spacing on long-implosion-time Z pinches have resulted in the observation of a regime of optimal wire number. The experiments varied the wire number of 40 and 32 mm diam arrays, resulting in interwire gaps from 3.9 to 0.36 mm, with fixed mass and length. aluminum K-shell powers up to 3.4 TW were measured, with long, slow rising, lower power x-ray pulses for interwire gaps greater than 2.2 mm and less than 0.7 mm, and short, fast rising, higher power pulses for interwire gaps in the range 0.7-2.2 mm.  相似文献   
10.
Five new gold acetylides, [AuCCR], with hydroxyl or amino functions in the organic radical R have been prepared. From these, nine phosphine complexes [(R3P)AuCCR] with R = Ph or Cy were synthesised. Reactions between the phosphine gold acetylides [(Ph3P)AuCCC(Me)(OH)Et] or [(Cy3P)AuCCC(Me)(OH)Et] and the iron carbonyl cluster [Et4N][Fe4N(CO)12] gave both neutral [(R3P)AuFe4N(CO)12] and ionic compounds [(R3P)2Au][Fe4N(CO)12]. Reaction with the penta-iron cluster [Et4N][Fe5N(CO)14] afforded [(R3P)2Au][Fe5N(CO)14], [(R3P)2Au][Fe4N(CO)12] and [(R3P)AuFe4N(CO)12]. The gold-iron clusters were characterised with spectroscopic methods (IR, NMR and Mössbauer) and in the case of [(Cy3P)AuFe4N(CO)12] a single-crystal X-ray analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号