首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   4篇
化学   23篇
力学   4篇
数学   9篇
物理学   16篇
  2023年   1篇
  2021年   3篇
  2020年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   2篇
  2011年   1篇
  2009年   5篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2000年   1篇
  1996年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1981年   1篇
  1980年   2篇
  1975年   1篇
  1973年   1篇
  1970年   2篇
  1968年   1篇
  1967年   1篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
1.
This paper numerically explores the possibility of ultrathin layering and high efficiency of graphene as a back surface field (BSF) based on a CdTe solar cell by Personal computer one-dimensional (PC1D) simulation. CdTe solar cells have been characterized and studied by varying the carrier lifetime, doping concentration, thickness, and bandgap of the graphene layer. With simulation results, the highest short-circuit current (Isc = 2.09 A), power conversion efficiency (η = 15%), and quantum efficiency (QE~85%) were achieved at a carrier lifetime of 1 × 103 μs and a doping concentration of 1 × 1017 cm−3 of graphene as a BSF layer-based CdTe solar cell. The thickness of the graphene BSF layer (1 μm) was proven the ultrathin, optimal, and obtainable for the fabrication of high-performance CdTe solar cells, confirming the suitability of graphene material as a BSF. This simulation confirmed that a CdTe solar cell with the proposed graphene as the BSF layer might be highly efficient with optimized parameters for fabrication.  相似文献   
2.
Novel photosynthetic reaction center model compounds of the type donor2–donor1–acceptor, composed of phenothiazine, BF2‐chelated dipyrromethene (BODIPY), and fullerene, respectively, have been newly synthesized using multistep synthetic methods. X‐ray structures of three of the phenothiazine‐BODIPY intermediate compounds have been solved to visualize the substitution effect caused by the phenothiazine on the BODIPY macrocycle. Optical absorption and emission, computational, and differential pulse voltammetry studies were systematically performed to establish the molecular integrity of the triads. The N‐substituted phenothiazine was found to be easier to oxidize by 60 mV compared to the C‐substituted analogue. The geometry and electronic structures were obtained by B3LYP/6‐31G(dp) calculations (for H, B, N, and O) and B3LYP/6‐31G(df) calculations (for S) in vacuum, followed by a single‐point calculation in benzonitrile utilizing the polarizable continuum model (PCM). The HOMO?1, HOMO, and LUMO were, respectively, on the BODIPY, phenothiazine and fullerene entities, which agreed well with the site of electron transfer determined from electrochemical studies. The energy‐level diagram deduced from these data helped in elucidating the mechanistic details of the photochemical events. Excitation of BODIPY resulted in ultrafast electron transfer to produce PTZ–BODIPY.+–C60.?; subsequent hole shift resulted in PTZ.+–BODIPY–C60.? charge‐separated species. The return of the charge‐separated species was found to be solvent dependent. In nonpolar solvents the PTZ.+–BODIPY–C60.? species populated the 3C60* prior to returning to the ground state, while in polar solvent no such process was observed due to relative positioning of the energy levels. The 1BODIPY* generated radical ion‐pair in these triads persisted for few nanoseconds due to electron transfer/hole‐shift mechanism.  相似文献   
3.
We report a Ni‐catalyzed regioselective α‐carbonylalkylarylation of vinylarenes with α‐halocarbonyl compounds and arylzinc reagents. The reaction works with primary, secondary, and tertiary α‐halocarbonyl molecules, and electronically varied arylzinc reagents. The reaction generates γ,γ‐diarylcarbonyl derivatives with α‐secondary, tertiary, and quaternary carbon centers. The products can be readily converted to aryltetralones, including a precursor to Zoloft, an antidepressant drug.  相似文献   
4.
CR-39 Solid State Nuclear Track Detecting foils (SSNTD), along with 1 mm thick polyethylene radiator, sealed in triple laminated pouches, are used for country wide Fast Neutron Personnel Monitoring in India. With the present system of processing by elevated temperature electrochemical etching (ETECE) and evaluation using automatic image analysis, only 16 foils are processed at a time and it is useful over the dose equivalent range 0.2 mSv to 10 mSv. It has been reported that, by processing CR-39 of good detection efficiency by chemical etching at elevated temperature, more numbers of foils can be processed simultaneously. In the present study, CR-39 foils from Pershore Moulding (UK) have been chemically etched using 7 N KOH under various conditions of temperature and etching durations and evaluated using high magnification microscope. The duration of chemical etching, has been optimized at a constant temperature of 60°C for chemical etching process. The characteristics of the chemically etched CR-39 foils are compared with the characteristics of the CR-39 foils processed by the existing system of ETECE and the detailed results are presented in the full text of the paper. It has been observed that by chemical etching process, the dose equivalent range of CR-39 foils can be extended above 60 mSv.   相似文献   
5.
6.
7.
The work function was measured in a vacuum of 10−5 Torr for magnesia incorporated lanthanum chromite based ceramic designated LC2OM. The results obtained are φ R =2.75eV andA R =0.11 A/cm2 K2 which ensure that LC2OM has favourable electron emission characteristics for MHD hot electrode material. The measurements have been carried out in the temperature range from ambient to 1700 K. Chemistry Division  相似文献   
8.

Background  

Neurotrophins are important regulators of growth and regeneration, and acutely, they can modulate the activity of voltage-gated ion channels. Previously we have shown that acute brain-derived neurotrophic factor (BDNF) activation of neurotrophin receptor tyrosine kinase B (TrkB) suppresses the Shaker voltage-gated potassium channel (Kv1.3) via phosphorylation of multiple tyrosine residues in the N and C terminal aspects of the channel protein. It is not known how adaptor proteins, which lack catalytic activity, but interact with members of the neurotrophic signaling pathway, might scaffold with ion channels or modulate channel activity.  相似文献   
9.
Key results of zero-field (ZF) and transverse-field (TF) muon-spin-relaxation (μSR) experiments on superconducting and insulating RBa2Cu3O y (R123 y , with R=Eu, Gd, Pr and Pr/Y:y=6, 7) are examined. The chemical behavior of the positive muon probe is addressed, and muon-oxygen bonding is shown to occur in all these cuprates. To explain magnetic fields at muon-probe sites in Pr x Y1−x Ba2Cu3O y (0<=x<0.5,y=7 andx=0,y=6) samples, improvements on the reported magnetic structures from neutron diffraction are necessary. Cu magnetism in Pr123y (y=6,7) is observed belowT N1, which is near RT. The magnetism seen belowT N2 can be interpreted assuming an additional ordering in the Cutt-O chain layers. Alternatively, Pr ordering is also considered as the cause of the second phase transition. Considering the specific muon-probe location, a more detailed interpretation can be provided for the μSR parameters, measured in the normal and mixed states of these unconventional superconductors.  相似文献   
10.
SLIDE software, which models the flexibility of protein and ligand side chains while docking, was used to screen several large databases to identify inhibitors of Brugia malayi asparaginyl-tRNA synthetase (AsnRS), a target for anti-parasitic drug design. Seven classes of compounds identified by SLIDE were confirmed as micromolar inhibitors of the enzyme. Analogs of one of these classes of inhibitors, the long side-chain variolins, cannot bind to the adenosyl pocket of the closed conformation of AsnRS due to steric clashes, though the short side-chain variolins identified by SLIDE␣apparently bind isosterically with adenosine. We hypothesized that an open conformation of the motif 2 loop also permits the long side-chain variolins to bind in the adenosine pocket and that their selectivity for Brugia relative to human AsnRS can be explained by differences in the sequence and conformation of this loop. Loop flexibility sampling using Rigidity Optimized Conformational Kinetics (ROCK) confirms this possibility, while scoring of the relative affinities of the different ligands by SLIDE correlates well with the compounds’ ranks in inhibition assays. Combining ROCK and SLIDE provides a promising approach for exploiting conformational flexibility in structure-based screening and design of species selective inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号