首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   3篇
物理学   2篇
  2011年   2篇
  2001年   2篇
  1977年   1篇
排序方式: 共有5条查询结果,搜索用时 120 毫秒
1
1.
Recently, it was found that Pt clusters deposited on Pd shell over Au core nanoparticles (Au@Pd@Pt NPs) exhibit unusually high electrocatalytic activity for the electro-oxidation of formic acid (P. P. Fang, S. Duan, et al., Chem. Sci., 2011, 2, 531-539). In an attempt to offer an explanation, we used here carbon monoxide (CO) as probed molecules, and applied density functional theory (DFT) to simulate the surface Raman spectra of CO at this core-shell-cluster NPs with a two monolayer thickness of Pd shell and various Pt cluster coverage. Our DFT results show that the calculated Pt coverage dependent spectra fit the experimental ones well only if the Pt clusters adopt a mushroom-like structure, while currently the island-like structure is the widely accepted model, which follows the Volmer-Weber growth mode. This result infers that there should be a new growth mode, i.e., the mushroom growth mode as proposed in the present work, for Au@Pd@Pt NPs. We suggest that such a mushroom-like structure may offer novel active sites, which accounts for the observed high electrocatalytic activity of Au@Pd@Pt NPs.  相似文献   
2.
Experimental performance of chemical lasers pumped by the H2 + F2 chain reaction has consistently fallen below expectations, although the “hot”, H+F2HF(ν)+F, pumping reaction produces greater vibrational excitation than the “cold”, F+H2→HF(ν)+H, reaction used in most HF cw chemical lasers. The reasons for this discrepancy are examined by measuring spatially-resolved HF(ν) number density and the temperature profiles in a laminar, parallel flow, hydrogen-fluorine mixing layer and comparing the results with theoretical computations. By dissociating either the hydrogen or fluorine molecules with arc heaters, kinetics of the hot and cold reaction systems are separately investigated. From a comparison of the experimental vibrational populations and the theoretical predictions, it is concluded that: (1) previously-used pumping and deactivation rates associated with the cold reaction are approximately correct, (2) the deactivation of high vibrational levels populated by the hot reaction is much faster than previously stated in Ref. (1), and (3) the inclusion of multiquantum HF(ν) V-T (or V-R) deactivation reactions, which sharply decreases the number density of the upper vibrational levels, greatly improves the agreement between theory and experiment.  相似文献   
3.
We have developed a method for the quantitative 3-dimensional profiling of micron sized channel networks within optically transparent "lab-on-a-chip" microreactor devices. The method involves capturing digitised microscope images of the channel network filled with an optically absorbing dye. The microscope is operated in transmission mode using light filtered through a narrow bandpass filter with a maximum transmission wavelength matching the wavelength of the absorbance maximum of the dye solution. Digitised images of a chip filled with solvent and dye solution are analysed pixel by pixel to yield a spatially resolved array of absorbance values. This array is then converted to optical path length values using the Beer-Lambert law, thereby providing the 3D profile of the channel network. The method is capable of measuring channel depths from 10 to 500 microm (and probably even smaller depths) with an accuracy of a few percent. Lateral spatial resolution of less than 1 microm is achievable. It has been established that distortion of the measured profiles resulting from a mismatch in refractive index between the dye solution and the glass of the microreactors is insignificant. The method has been successfully used here to investigate the effects of thermal bonding and etch time on channel profiles. The technique provides a convenient, accurate and non-destructive method required to determine channel profiles; information which is essential to enable optimisation of the operating characteristics of microreactor devices for particular applications.  相似文献   
4.
A simple lattice gas model, a microscopically reversible cellular automaton, is described and shown to exhibit thermodynamic irreversibility in processes similar to those in real gases. The model, which has no random elements, develops a long-lasting equilibrium state within a Poincaré cycle. This state is an attractor resulting from the nonlinear nature of the collective particle collisions and motions. The results illustrate how the Second Law of Thermodynamics applies to real systems governed by reversible microscopic dynamics.  相似文献   
5.
The properties of nanomaterials for use in catalytic and energy storage applications strongly depends on the nature of their surfaces. Nanocrystals with high surface energy have an open surface structure and possess a high density of low-coordinated step and kink atoms. Possession of such features can lead to exceptional catalytic properties. The current barrier for widespread industrial use is found in the difficulty to synthesise nanocrystals with high-energy surfaces. In this critical review we present a review of the progress made for producing shape-controlled synthesis of nanomaterials of high surface energy using electrochemical and wet chemistry techniques. Important nanomaterials such as nanocrystal catalysts based on Pt, Pd, Au and Fe, metal oxides TiO(2) and SnO(2), as well as lithium Mn-rich metal oxides are covered. Emphasis of current applications in electrocatalysis, photocatalysis, gas sensor and lithium ion batteries are extensively discussed. Finally, a future synopsis about emerging applications is given (139 references).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号