首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学   1篇
晶体学   1篇
物理学   9篇
  2022年   1篇
  2012年   2篇
  2006年   1篇
  2003年   1篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
2.
3.
This work considers the enhancement of the thermoelectric figure of merit, ZT, of SrTiO3 (STO) semiconductors by (La, Dy and N) co-doping. We have focused on SrTiO3 because it is a semiconductor with a high Seebeck coefficient compared to that of metals. It is expected that SrTiO3 can provide a high power factor, because the capability of converting heat into electricity is proportional to the Seebeck coefficient squared. This research aims to improve the thermoelectric performance of SrTiO3 by replacing host atoms by La, Dy and N atoms based on a theoretical approach performed with the Vienna Ab Initio Simulation Package (VASP) code. Here, undoped SrTiO3, Sr0.875La0.125TiO3, Sr0.875Dy0.125TiO3, SrTiO2.958N0.042, Sr0.750La0.125Dy0.125TiO3 and Sr0.875La0.125TiO2.958N0.042 are studied to investigate the influence of La, Dy and N doping on the thermoelectric properties of the SrTiO3 semiconductor. The undoped and La-, Dy- and N-doped STO structures are optimized. Next, the density of states (DOS), band structures, Seebeck coefficient, electrical conductivity per relaxation time, thermal conductivity per relaxation time and figure of merit (ZT) of all the doped systems are studied. From first-principles calculations, STO exhibits a high Seebeck coefficient and high figure of merit. However, metal and nonmetal doping, i.e., (La, N) co-doping, can generate a figure of merit higher than that of undoped STO. Interestingly, La, Dy and N doping can significantly shift the Fermi level and change the DOS of SrTiO3 around the Fermi level, leading to very different thermoelectric properties than those of undoped SrTiO3. All doped systems considered here show greater electrical conductivity per relaxation time than undoped STO. In particular, (La, N) co-doped STO exhibits the highest ZT of 0.79 at 300 K, and still a high value of 0.77 at 1000 K, as well as high electrical conductivity per relaxation time. This renders it a viable candidate for high-temperature applications.  相似文献   
4.
The performance of a CMOS-compatible electro-optic Mach-Zehnder plasmonic modulator is investigated using electromagnetic and carrier transport simulations. Each arm of the Mach-Zehnder device comprises a metal–insulator–semiconductor–insulator–metal (MISIM) structure on a buried oxide substrate. Quantum mechanical effects at the oxide/semiconductor interfaces were considered in the calculation of electron density profiles across the structure, in order to determine the refractive index distribution and its dependence on applied bias. This information was used in finite element simulations of the electromagnetic modes within the MISIM structure in order to determine the Mach-Zehnder arm lengths required to achieve destructive interference and the corresponding propagation loss incurred by the device. Both inversion and accumulation mode devices were investigated, and the layer thicknesses and height were adjusted to optimise the device performance. A device loss of <8 dB is predicted for a MISIM structure with a 25 nm thick silicon layer, for which the device length is <3 μm, and <5 dB loss is predicted for the limiting case of a 5 nm thick silicon layer in a 1.2 μm long device: in both cases, the maximum operating voltage is 7.5 V.  相似文献   
5.
The band structure of Ge1 ? x ? ySixSny ternary alloys, which are easier to grow than binary Ge1-xSnx alloys, and clearly offer a wider tunability of their direct band-gap and other properties, was calculated and investigated by using the empirical pseudo-potential plane wave method with modified Falicov pseudo-potential formfunction. The virtual crystal approximation (VCA) and 2 × 2 × 2 super-cell (mixed atoms) method were adopted to model the alloy. In order to calculate all of these properties, the empirical pseudo-potential code was developed. The lattice constant of the alloy varies between 0.543 to 0.649 nm. The regions in the parameter space that corresponds to a direct or indirect band gap semiconductor are identified. The Ge1 ? x ? ySixSny ternary alloy shows the direct band gap for appropriate composition of Si, Ge and Sn. The direct energy gap is in the range 0–1.4 eV (from the VCA calculation), and 0–0.8 eV (from the super-cell calculation), depending on the alloy composition. Therefore, this alloy is a promising material for optoelectronic applications in both visible and infrared range, such as interband lasers or, solar cells. Furthermore, strain-free heterostructures based on such alloys are designed and, using the effective-mass Hamiltonian model, the electronic structure of GeSiSn quantum wells with arbitrary composition is investigated, in order to understand their properties and the potential of their use in devices.  相似文献   
6.
Intersubband electroluminescence results are presented from Si/SiGe quantum cascade emitters at 3.2 THz and at temperatures up to 150 K. The effect of adding doping into the active quantum wells was studied in addition to reduced barrier widths from previous measurements. While the current through the sample is increased by the addition of doping, the emitted power is reduced through additional free carrier absorption and Coulombic scattering. Free electron laser measurements confirm the intersubband transitions in the quantum wells of the cascade devices and produce non-radiative lifetimes of 20 ps between 4 and 150 K.  相似文献   
7.
In this work we report on modeling the electron transport in n-Si/SiGe structures. The electronic structure is calculated within the effective-mass complex-energy framework, separately for perpendicular (Xz) and in-plane (Xxy) valleys, the degeneracy of which is lifted by strain, and additionally by size quantization. The transport is described via scattering between quantized states, using the rate equations approach and tight-binding expansion, taking the coupling with two nearest-neighbour periods. The acoustic phonon, optical phonon, alloy and interface roughness scattering are taken in the model. The calculated U/I dependence and gain profiles are presented for a couple of QC structures.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号