首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
化学   4篇
力学   4篇
物理学   4篇
  2021年   1篇
  2020年   1篇
  2013年   1篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
A numerical investigation of the mixed convection heat transfer from vertical helically coiled tubes in a cylindrical shell at various Reynolds and Rayleigh numbers, various coil‐to‐tube diameter ratios and non‐dimensional coil pitches was carried out. The particular difference in this study compared with other similar studies is the boundary conditions for the helical coil. Most studies focus on constant wall temperature or constant heat flux, whereas in this study it was a fluid‐to‐fluid heat exchanger. The purpose of this article is to assess the influence of the tube diameter, coil pitch and shell‐side mass flow rate on shell‐side heat transfer coefficient of the heat exchanger. Different characteristic lengths were used in the Nusselt number calculations to determine which length best fits the data and finally it has been shown that the normalized length of the shell‐side of the heat exchanger reasonably demonstrates the desired relation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
2.
In this paper, numerical, curvilinear and turbulent model has been used to investigate the effect of vortex generator's longitudinal displacement on heat transfer and fluid flow in different Reynolds numbers ranging from 500 to 3000. The numerical model has been validated with experimental results of a former study, which is resembled in a particular case. Numerical simulation shows that the vorticity enhancement would increase both Nusselt number and pressure drop. Proposed trend is not constant and the pattern in which parameters change is dependent on Reynolds number. Finally, a conjugated optimization of pressure drop and the Nusselt number has been suggested based on the order of parameter changes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
3.
In recent years, because of the limited availability of oil resources and the increasing concerns regarding environment protection, much attention has been drawn to produce packaging films based on degradable biopolymers instead of synthetic polymers. On the other hand, because of the high costs of oil extraction, raw materials and film production, and disposing of the waste products of synthetic films, the need to replace these films with less pollutant and more cost‐effective films is growing globally. In this study, to answer the need for replacing synthetic polymer films, nanocomposite films based on thermoplastic starch reinforced with cellulose nanofibers and graphene oxide nanoplatelets were produced and characterized. The results implied that the synergistic effect of cellulose nanofibers and graphene oxide nanoplatelets has played an important role in improving the mechanical properties of the films. The results showed that with the addition of cellulose nanofibers and graphene oxide nanoplatelets, the tensile strength and elastic modulus of starch film were increased from 3 and 32 MPa to 13 and 436 MPa, which corresponds to 438% and 1435% improvement, respectively. In addition, the oxygen permeability resistance and the water vapor transmission for samples containing 3 wt% of graphene oxide nanoplatelets was decreased by 78% and 30% compared with the thermoplastic starch film, respectively. The permeability coefficient of the samples containing 3 wt% graphene oxide nanoplatelets for oxygen, nitrogen, and carbon dioxide have proved to be 0.051, 0.054, and 0.047 barrer, which shows that these films can perform well as packaging films.  相似文献   
4.
The linear 3D elasticity theory in conjunction with the classical method of separation of variables and the translational addition theorem for cylindrical wave functions are employed to investigate the three-dimensional steady-state sound radiation characteristics of an arbitrarily thick eccentric hollow cylinder of infinite length, submerged in an unbounded ideal acoustic medium, and subjected to arbitrary time-harmonic on-surface mechanical drives. The spatial Fourier transform along the shell axis and Fourier series expansion in the circumferential direction are utilized to obtain a formal integral expression for the radiated pressure field in the frequency domain. The method of stationary phase is subsequently implemented to evaluate the integral for an observation point in the far field. The analytical results are illustrated with numerical examples in which air-filled water-submerged concentric and eccentric steel cylinders are driven by harmonic concentrated radial and transverse surface loads. Effects of excitation and cylinder eccentricity on the far-field radiated pressure amplitudes/directivities are discussed and contributions from pseudo-Rayleigh, whispering gallery, and axially guided waves are examined through selected spatial dispersion patterns. Limiting cases are considered and the validity of results is established with the aid of a commercial finite element package as well as by comparison with the data in the existing literature.  相似文献   
5.
Knowledge of the entanglement properties of the wave functions commonly used to describe quantum many-particle systems can enhance our understanding of their correlation structure and provide new insights into quantum phase transitions that are observed experimentally or predicted theoretically. To illustrate this theme, we first examine the bipartite entanglement contained in the wave functions generated by microscopic many-body theory for the transverse Ising model, a system of Pauli spins on a lattice that exhibits an order-disorder magnetic quantum phase transition under variation of the coupling parameter. Results for the single-site entanglement and measures of two-site bipartite entanglement are obtained for optimal wave functions of Jastrow-Hartree type. Second, we address the nature of bipartite and tripartite entanglement of spins in the ground state of the noninteracting Fermi gas, through analysis of its two- and three-fermion reduced density matrices. The presence of genuine tripartite entanglement is established and characterized by implementation of suitable entanglement witnesses and stabilizer operators. We close with a broader discussion of the relationships between the entanglement properties of strongly interacting systems of identical quantum particles and the dynamical and statistical correlations entering their wave functions.  相似文献   
6.
In this paper a two-dimensional numerical simulation of a steady incompressible and turbulent model has been carried out to study the effects of vortex generators in a compact heat exchanger in a curvilinear coordinate system. The mesh which is applied in this study is boundary fitted and has been smoothed by a Laplace operator. Experimental data of a former study has been applied to validate the numerical results. The effects of geometrical variation are studied by adjusting vortex generators’ inclination and relative cross location. The major issue of this study is the optimal trade-off by selecting an optimal geometric, considering the opposite influences of geometrical variation on Nusselt number and pressure drop.  相似文献   
7.
High salt levels are one of the significant and major limiting factors on crop yield and productivity. Out of the available attempts made against high salt levels, engineered nanoparticles (NPs) have been widely employed and considered as effective strategies in this regard. Of these NPs, titanium dioxide nanoparticles (TiO2 NPs) and selenium functionalized using chitosan nanoparticles (Cs–Se NPs) were applied for a quite number of plants, but their potential roles for alleviating the adverse effects of salinity on stevia remains unclear. Stevia (Stevia rebaudiana Bertoni) is one of the reputed medicinal plants due to their diterpenoid steviol glycosides (stevioside and rebaudioside A). For this reason, the current study was designed to investigate the potential of TiO2 NPs (0, 100 and 200 mg L−1) and Cs–Se NPs (0, 10 and 20 mg L−1) to alleviate salt stress (0, 50 and 100 mM NaCl) in stevia. The findings of the study revealed that salinity decreased the growth and photosynthetic traits but resulted in substantial cell damage through increasing H2O2 and MDA content, as well as electrolyte leakage (EL). However, the application of TiO2 NPs (100 mg L−1) and Cs–Se NPs (20 mg L−1) increased the growth, photosynthetic performance and activity of antioxidant enzymes, and decreased the contents of H2O2, MDA and EL under the saline conditions. In addition to the enhanced growth and physiological performance of the plant, the essential oil content was also increased with the treatments of TiO2 (100 mg L−1) and Cs–Se NPs (20 mg L−1). In addition, the tested NPs treatments increased the concentration of stevioside (in the non-saline condition and under salinity stress) and rebaudioside A (under the salinity conditions) in stevia plants. Overall, the current findings suggest that especially 100 mg L−1 TiO2 NPs and 20 mg L−1 Cs–Se could be considered as promising agents in combating high levels of salinity in the case of stevia.  相似文献   
8.
The crystallisation of amorphous Si1? x C x films (x = 1/3) produced via magnetron sputtering on silicon substrates was investigated. Grazing incidence X-ray diffractometry was used to analyse the crystalline precipitates obtained after annealing at temperatures between 1200°C and 1350°C. After annealing times of 15 h at 1200°C and 15 h at 1350°C, crystallisation of SiC is complete. The average crystallite size, d, was determined using the Scherrer equation. The rate constants for the initial growth of the crystallites were determined by straight line fits in the d ? t diagrams (t being the annealing time), which obey the Arrhenius law. The activation enthalpy of 4.0 ± 0.7 eV is, within error limits, the same as that found for the growth of silicon carbide crystallites in magnetron sputtered Si1? x C x films (x = 1/2).  相似文献   
9.
The supramolecular chemistry of bowl-shaped heptazinc metallocavitands templated by Schiff base macrocycles has been investigated. Dimerization thermodynamics were probed by (1)H NMR spectroscopy in benzene-d(6), toluene-d(8), and p-xylene-d(10) and revealed the process to be entropy-driven and enthalpy-opposed in each solvent. Trends in the experimentally determined enthalpy and entropy values are related to the thermodynamics of solvent autosolvation, solvent molecules being released from the monomeric metallocavitand cavity into the bulk solvent upon dimerization. The relationship established between experimentally measured dimerization thermodynamics and autosolvation data successfully predicts the absence of dimerization in CH(2)Cl(2) and CHCl(3) and was used to estimate the number of solvent molecules interacting with the monomeric metallocavitand in solution. Host-guest interactions between heptazinc metallocavitands and fullerene C(60) have also been investigated. Interestingly, metallocavitand-C(60) interactions are only observed in solvents that facilitate entropy-driven dimerization suggesting entropy and solvent autosolvation may be important in explaining concave-convex interactions.  相似文献   
10.
An exact study based on the linear theory of elasticity is presented for the steady-state sound radiation characteristics of an arbitrarily thick radially inhomogeneous elastic isotropic hollow sphere, immersed in and filled with ideal compressible fluids, and subjected to an arbitrary axisymmetric time-harmonic driving force at its internal surface. A modal state equation with variable coefficients is set up in terms of appropriate displacement and stress functions and their spherical harmonics by means of the laminated approximation approach. Taylor’s expansion theorem is subsequently employed to solve the modal state equation, ultimately calculating a global transfer matrix. Numerical results are presented for a water-submerged/air-filled steel/zirconia FGM hollow sphere under an axisymmetric distributed internal pressure force. The effects of shell wall thickness, the material compositional gradient, frequency, and subtended polar angle of the internal pressure force on the far-field radiated pressure directivity patterns as well as the total radiated power are examined. It is demonstrated that the material gradient can significantly change the acoustical characteristics of hollow inhomogeneous sphere, especially for thick shells at high excitation frequencies. Limiting cases are considered and good agreements with available results as well as with the computations made by using a finite element package are obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号