首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   1篇
化学   83篇
力学   2篇
数学   6篇
物理学   19篇
  2021年   2篇
  2019年   1篇
  2017年   1篇
  2014年   1篇
  2013年   3篇
  2012年   13篇
  2011年   11篇
  2010年   5篇
  2009年   10篇
  2008年   15篇
  2007年   11篇
  2006年   12篇
  2005年   4篇
  2004年   6篇
  2003年   5篇
  2002年   3篇
  2000年   2篇
  1996年   1篇
  1993年   1篇
  1985年   1篇
  1939年   2篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
1.
Magnetic resonance imaging has rarely been applied to rigid polymeric materials, due primarily to the strong dipolar coupling and short signal lifetimes inherent in these materials. SPRITE (single point ramped imaging withT 1 enhancement) (B. J. Balcom, R. P. MacGregor, S. D. Beyea, D. P. Green, R. L. Armstrong, T. W. Bremner: J. Magn. Reson. A123, 131–134, 1996) is particularly well suited to imaging solid materials. With SPRITE, the only requirement is thatT 2* be long enough so that the signal can be phase-encoded. The minimum phase encoding time is limited by the maximum gradient strength available and by the instrument deadtime. At present this is usually tens of microseconds and will only improve with refinements in technology. We have used the SPRITE sequence in conjunction with raising the sample temperature to obtain images of rigid polymers that have largely frustrated conventional imaging methods. This approach provides a straightforward and reliable method for imaging a class of samples that, up until now, have been very difficult to image.  相似文献   
2.
In this paper, I argue that trying is the locus of freedom and moral responsibility. Thus, any plausible view of free and responsible action must accommodate and account for free tryings. I then consider a version of agent causation whereby the agent directly causes her tryings. On this view, the agent is afforded direct control over her efforts and there is no need to posit—as other agent-causal theorists do—an uncaused event. I discuss the potential advantages of this sort of view, and its challenges.  相似文献   
3.
The molecular recognition of peptides and proteins in aqueous solution by designed molecules remains an elusive goal with broad implications for basic biochemical research and for sensors and separations technologies. This paper describes the recognition of N-terminal tryptophan in aqueous solution by the synthetic host cucurbit[8]uril (Q8). Q8 is known to form 1:1:1 heteroternary complexes with methyl viologen (MV) and a second aromatic guest. Here, the complexes of Q8.MV with (i) the four natural aromatic alpha-amino acids, (ii) four singly charged tryptophan derivatives, and (iii) four tryptophan-containing tripeptides were characterized by isothermal titration calorimetry, mass spectrometry, and UV-visible, fluorescence, and (1)H NMR spectroscopy. We find that Q8.MV binds Trp-Gly-Gly with high affinity (K(a) = 1.3 x 10(5) M(-1)), with 6-fold specificity over Gly-Trp-Gly, and with 40-fold specificity over Gly-Gly-Trp. Analysis of the nine indole-containing compounds suggests that peptide recognition is mediated by the electrostatic charge(s) proximal to the indole, and that the mode of binding is consistent for these compounds. Complex formation is accompanied by the growth of a visible charge-transfer band and the quenching of indole fluorescence. These optical properties, combined with the stability and selectivity of this system, are promising for applications in sensing and separating specific peptides.  相似文献   
4.
We present a novel method for obtaining high resolution NMR spectra in the presence of grossly inhomogeneous magnetic fields, such as those encountered in one-sided access NMR. Our method combines the well-known principle of reference deconvolution with NMR imaging in order to resolve spectral features with frequency resolution orders of magnitude smaller than the prevailing line-broadening due to field inhomogeneity. We demonstrate that, in cases of inhomogeneous field line-broadening more than an order of magnitude larger than the spectral features to be resolved, rather than performing reference deconvolution on the sample as a whole, it is more favourable in terms of SNR to divide the target region of a sample into smaller sub-regions, by means of chemical shift imaging, and then to perform reference deconvolution on the individual sub-region spectra, finally summing the results In this way, significant resolution enhancements can be obtained in the presence of severe magnetic field inhomogeneity without an unacceptable loss in SNR.  相似文献   
5.
Pluronic F127, a triblock copolymer of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), has generated considerable interest as a drug delivery vehicle due to its ability to gel at physiological temperatures. This work examines the gelation behavior of Pluronic F127 in the presence of a series of hydrophobic pharmaceuticals, to determine whether there is any correlation between gelation and physicochemical parameters of drug solutes. The study includes the local anesthetics dibucaine, lidocaine, and tetracaine; the pharmaceutical additives methyl paraben, ethyl paraben, and propyl paraben; the anti-cancer agents paclitaxel and baccatin III; and the anti-inflammatory agent sulindac. The results indicate that the presence of local anesthetics and pharmaceutical additives allows F127 solutions to form gels at lower copolymer concentrations; local anesthetics and pharmaceutical additives also shift gelation down to a lower gelation temperature. This behavior is strongly dependent on drug solubility; poorly soluble drugs (paclitaxel, baccatin III, sulindac) do not change the lower gelation temperature or minimum F127 concentration for gelation. An equation relating the decrease in gelation temperature to drug solubility is presented, and the equation fits the data well. The results have significant positive implications on the toxicity and economic issues related to use of Pluronic F127 in drug delivery.  相似文献   
6.
The cone and 1,2,3 alternate isomers of calix[6]arene bis‐crown‐4 were investigated computationally. Structural optimizations, energies, bond distances, and Mulliken charges were calculated by the application of the B3LYP/6‐31g(d) method/basis, followed by NMR calculations via both B3LYP/6‐31g(d) and HF/6‐31g(d). Calculations were completed at three different levels of imposed symmetry, and two calculations investigated the chloroform solvent effects. Better NMR results were obtained from HF/6‐31g(d) calculations that did not impose molecular symmetry constraints. Consideration of solvent effects improved ground state energies, but other improvements were minimal and not significant enough to justify the added computational expense of solvent calculations. Overall results are consistent with known experimental assignments and were valuable for assigning previously unknown NMR peaks. Net charges, electrostatic forces, and local dipoles – but not bond lengths – are strongly correlated to spectroscopic manifestations of steric compression. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
7.
Two strategies for the optimization of centric scan SPRITE (single point ramped imaging with T1 enhancement) magnetic resonance imaging techniques are presented. Point spread functions (PSF) for the centric scan SPRITE methodologies are numerically simulated, and the blurring manifested in a centric scan SPRITE image through PSF convolution is characterized. Optimal choices of imaging parameters and k-space sampling scheme are predicted to obtain maximum signal-to-noise ratio (SNR) while maintaining acceptable image resolution. The point spread function simulation predictions are verified experimentally. The acquisition of multiple FID points following each RF excitation is described and the use of the Chirp z-Transform algorithm for the scaling of field of view (FOV) of the reconstructed images is illustrated. Effective recombination of the rescaled images for SNR improvement and T*2 mapping is demonstrated.  相似文献   
8.
Transient absorption spectroscopy is used to demonstrate that the electric dipole moment of the substrate cyclobutane thymine dimer affects the charge recombination reaction between fully reduced flavin adenine dinucleotide (FADH-) and the neutral radical tryptophan 306 (Trp306*) in Escherichia coli DNA photolyase. At pH 7.4, the charge recombination is slowed by a factor of 1.75 in the presence of substrate, but not at pH 5.4. Photolyase does bind substrate at pH 5.4, and it seems that this pH effect originates from the conversion of FADH- to FADH2 at lower pH. The free-energy changes calculated from the electric field parameters and from the change in electron transfer rate are in good agreement and support the idea that the substrate electric dipole is responsible for the observed change in electron transfer rate. It is expected that the substrate electric field will also modify the physiologically important from excited 1FADH- to the substrate in the DNA repair reaction.  相似文献   
9.
The kinetics of capillary imbibition in ordinary Portland cement pastes has been studied experimentally and theoretically. Nuclear magnetic resonance stray field imaging (STRAFI) has been used to record water concentration profiles for various ingress times. The profiles follow a t law and thus a master curve can be formed using the Boltzmann transformation. The distribution of pore sizes within the sample as measured by NMR cryoporometry shows a prominent peak at 100Å. A computer model of the pore structure was developed consisting of a lattice of interconnecting pores with a size distribution consistent with the cryoporometry results. The Hagen–Poiseuille law was used to describe the kinetics of the water in this pore structure. The best agreement between the computer simulations and the experimental master curve was obtained by using a narrower range of pore sizes than indicated by the cryoporometry results.  相似文献   
10.
Oligonucleotide chemistry has been developed greatly over the past three decades, with many advances in increasing nuclease resistance, enhancing duplex stability and assisting with cellular uptake. Locked nucleic acid (LNA) is a structurally rigid modification that increases the binding affinity of a modified-oligonucleotide. In contrast, unlocked nucleic acid (UNA) is a highly flexible modification, which can be used to modulate duplex characteristics. In this tutorial review, we will compare the synthetic routes to both of these modifications, contrast the structural features, examine the hybridization properties of LNA and UNA modified duplexes, and discuss how they have been applied within biotechnology and drug research. LNA has found widespread use in antisense oligonucleotide technology, where it can stabilize interactions with target RNA and protect from cellular nucleases. The newly emerging field of siRNAs has made use of LNA and, recently, also UNA. These modifications are able to increase double-stranded RNA stability in serum and decrease off-target effects seen with conventional siRNAs. LNA and UNA are also emerging as versatile modifications for aptamers. Their application to known aptamer structures has opened up the possibility of future selection of LNA-modified aptamers. Each of these oligonucleotide technologies has the potential to become a new type of therapy to treat a wide variety of diseases, and LNA and UNA will no doubt play a part in future developments of therapeutic and diagnostic oligonucleotides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号