首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
化学   5篇
力学   1篇
物理学   18篇
  2019年   2篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2008年   1篇
  2005年   1篇
  2003年   1篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Future wakefield accelerator (LWFA) experiments are expected to operate in the short pulse resonant regime and employ some form of laser guiding, such as a preformed plasma channel. Performance of an LWFA may be characterized by the maximum axial electric field Em, the dephasing length Ld, and the corresponding dephasing limited energy gain Wd. Dephasing is characterized by the normalized phase slippage rate Δβp, of the wakefield relative to a particle moving at the velocity of light. This paper presents analytical models for all of these quantities and compares them with results from simulations of channel-guided LWFAs. The simulations generally confirm the scaling predicted by the analytical models, agreeing within a few percent in most cases. The results show that with the proper choice of laser and channel parameters, the pulse will propagate at a nearly constant spot size rM over many Rayleigh lengths and generate large accelerating electric fields. The spot size correction to the slippage rate is shown to be important in the LWFA regime, whereas Δβp, is essentially independent of laser intensity. An example is presented of a 25-TW, 100-fs laser pulse that produces a dephasing limited energy gain in excess of 1 GeV  相似文献   
7.
A linear analysis of the electron-beam deflection system in a magnicon amplifier is presented. The system consists of identical cavities, one driven and the remainder passive, separated by a drift space and immersed in an axial magnetic field. The cavities contain a rotating TM110 mode. The length of each cavity is πν z/ω, and that of the drift space is πνzc, where ω is the RF frequency, ωc is the relativistic gyrofrequency in the guide field, and νz is the mean axial velocity of the beam electrons. The linearized electron orbits are obtained for arbitrary initial axial velocity, radial coordinate, and magnetic field. The small-signal gain and the phase shift are determined. The special case where ωc/ω=2 has unique features and is discussed in detail. For the NRL magnicon design, a power gain of 10 dB per passive cavity is feasible. Results from numerical modeling of a magnicon with two passive cavities are presented. Operation of the output cavity at the fundamental and higher harmonics of the input drive frequency is briefly discussed  相似文献   
8.
Analysis is presented for a novel interaction that makes possible a compact infrared grating laser configuration. The laser utilizes an annular axis encircling beam that is confined by an axial magnetic field and passes along a grating blazed axially on the center conductor of a coaxial resonator. A smooth cylindrical outer conductor completes the Fabry-Perot resonator to provide the necessary feedback for sustained oscillation. Linear analysis leads to an eigenvalue equation for cavity resonance frequencies, start-oscillation currents, and a gain-bandwidth relationship. The latter permits estimation of an upper bound on the ideal-beam power extraction efficiency. The nonlinear studies make use of analytical and numerical methods to gain a detailed understanding of electron motion in the presence of both axially focusing and radio frequency fields, and to determine the nonlinear efficiency. There is significant degradation of the interaction efficiency when the beam has finite annular thickness. Efficiency enhancement by means of a down-tapered axial field is demonstrated. A point design for lasing at ~160 μm in the far-infrared, utilizing a 100-kV beam with a pitch angle of 55° is presented. The start-oscillation current is a sensitive function of the resonator quality factor (or finesse); for a well-designed resonator, it is on the order of tens of Amperes  相似文献   
9.
An experimental study of the gain between two half-wavelength, 5.7-GHz TM110 mode pillbox cavities, separated by a quarter-wavelength drift space, and powered by a 170-A, 500-keV electron beam immersed in an 8.1-kG magnetic field is reported. These cavities constitute the first section of a planned multicavity deflection system, whose purpose is to spin up an electron beam to high transverse momentum (α≡υ⊥/υz⩾1) for injection into the output cavity of a frequency-doubling magnicon amplifier. A gain of ~15 dB was observed in the preferred circular polarization, at a frequency shift of approximately -0.18%, in the opposite circular polarization, at a frequency shift of approximately +0.06%. These results are in good agreement with theory  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号