首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
化学   15篇
物理学   10篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1995年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1984年   4篇
  1983年   3篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
The interatomic force constants and the phonon dispersion curves of AlP, AlAs, and AlSb are obtained from the electronic theory of solids by using our presented binding force, which includes mainly covalent interactions in the pseudopotential formalism and partially ionic interactions. The potential-parameter, effective ionic charge and ionic fraction of AlP and AlAs are estimated from those of AlSb and other III–V tetrahedrally- bonded compounds in spite of no experimental information on the band- calculation and the neutron scattering data of AlP and AlAs. Numerical data for the crystal energy of AlP and AlAs are in good agreement with the observed data, and the obtained results for the phonon dispersion curves and bulk modulus are useful to study the lattice dynamics and anharmonic properties of these compounds.  相似文献   
2.
A chelate resin immobilizing carboxymethylated pentaethylenehexamine (CM-PEHA resin) was prepared, and the potential for the separation and preconcentration of trace elements in water samples was evaluated through the adsorption/elution test for 62 elements. The CM-PEHA resin could quantitatively recover various elements, including Ag, Cd, Co, Cu, Fe, Ni, Pb, Ti, U, and Zn, and rare earth elements over a wide pH range, and also Mn at pH above 5 and V and Mo at pH below 7. This resin could also effectively remove major elements, such as alkali and alkaline earth elements, under acidic and neutral conditions. Solid phase extraction using the CM-PEHA resin was applicable to the determination of 10 trace elements, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn, in certified reference materials (EnviroMAT EU-L-1 wastewater and ES-L-1 ground water) and treated wastewater and all elements except for Mn in surface seawater using inductively coupled plasma atomic emission spectrometry. The detection limits, defined as 3 times the standard deviation for the procedural blank using 500 mL of purified water (50-fold preconcentration, n = 8), ranged from 0.003 μg L−1 (Mn) to 0.28 μg L−1 (Zn) as the concentration in 500 mL of solution.  相似文献   
3.
The usefulness of coprecipitation with lanthanum phosphate for separation and preconcentration of some heavy metals has been investigated. Although lanthanum phosphate coprecipitates iron(III) and lead quantitatively at pH 2.3, iron(II) can barely be collected at this pH. This coprecipitation technique was applicable to the separation and preconcentration of iron(III) before inductively coupled plasma atomic-emission spectrometric (ICP-AES) determination; the recoveries of iron(III) and iron(II) from spiked water samples were 103-105% and 0.2-0.7%, respectively. The coprecipitation was also useful for separation of 20 microg lead from 100 mL of an aqueous solution that also contained 1-100 mg iron. Coprecipitation of iron was substantially suppressed by addition of ascorbic acid, which enabled recovery of 97-103% of lead added to the solution, bringing the recovery to within 1.6-5.0% of the relative standard deviations. Lanthanum phosphate can also coprecipitate cadmium and indium quantitatively, although chromium(III), cobalt, and nickel and large amounts of sodium, potassium, magnesium, and calcium are barely coprecipitated at pH approximately/= 3.  相似文献   
4.
A determination method for lead in waste water and effluent was studied using flame atomic absorption spectrometry after preconcentration of lead by the rapid coprecipitation technique with gallium phosphate. Lead ranging from 0.5 to 50 μg was quantitatively coprecipitated with gallium phosphate from 100–150 mL sample solution (pH ∼5). The presence of gallium phosphate did not affect the atomic absorbance of lead. Since the concentration of gallium in the final sample solution is also measurable by flame atomic absorption spectrometry at 250.0 nm without further dilution, the rapid coprecipitation technique, which does not require complete collection of the precipitate, becomes possible using a known amount of gallium and measuring the concentrations of both lead and gallium in the final sample solution by flame atomic absorption spectrometry. The 32 diverse ions tested gave no significant interferences in the lead determination. The method proposed here is rapid and has good reproducibility. Received: 16 August 1999 / Revised: 6 October 1999 / Accepted: 14 October 1999  相似文献   
5.
The phase transition of tetrahedral compounds such as GaP, InP, ZnS, ZnSe, ZnTe and CdTe under pressure is investigated from the electronic theory of solids by using our recently presented binding force, which includes mainly covalent interactions in the pseudopotential formalism and partially ionic interactions. The partially ionic forces give the important contributions to the high-pressure phase and stabilize the NaCl-type structure for the high-pressure phase of these compounds, although not reported for GaP experimentally. Then, the numerical results such as the transition pressure, the volume-discontinuity, the transition heat with respect to the pressure-induced phase transition from the zinc-blende-to the NaCl-type lattice are obtained theoretically.  相似文献   
6.
This paper describes evaluation and correction of count rate characteristics of POSITOLOGICA II, a multi-slice whole body positron emission tomography system. The present study was performed using three phantoms; a 5 cm inner diameter, water-filled lucite cylinder, a 20 cm inner diameter, water-filled lucite cylinder and a chest phantom. After injection of high activity (about 1.85 GBq (50 mCi] of 13N ammonia into each phantom, rates of true coincidence, random coincidence and single photon detections were measured during decay of the isotope through more than two orders of magnitude of activity. At very high levels of activity, count rate characteristics of the system were saturated and limited to 660 kcps of total coincidence rate, which was the sum of rates in on-time and off-time windows, by the FIFO (first-in first-out) output frequency. Below those levels of activity the relationship between count loss and true coincidence rate was not unique but depended on the phantom configurations, suggesting that count loss correction using the above relationship was inadequate for quantitative study. However, the relationship between count loss and single rate was almost independent of the phantom configurations. Thus in conclusion count loss could be corrected using single rate for POSITOLOGICA II. A practical method of count loss correction was also proposed.  相似文献   
7.
The palladium‐catalyzed polycondensation of aryl diiodides with 1,3‐bis(phenylphosphino)propane afforded poly(arylenediphosphine)s in good yields. Treatment of the polyphosphine with elemental sulfur and hydrogen peroxide efficiently converted the polyphosphine into poly(arylenediphosphine sulfide) and poly(arylenediphosphine oxide), respectively. Treatment of the polyphosphines with Pd(II) and Pt(II) yielded corresponding polymer‐metal complexes with high metal contents. Application of the polymer‐Pd complexes in homogeneous and heterogeneous aryl alkynylation and carbonylation was examined. The polymer‐Pd complexes showed good catalytic activity similar to that of the corresponding low molecular weight Pd complex, and reuse of the polymer catalysts was easily achieved. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2637–2647, 2002  相似文献   
8.
By applying an internal standardization, we could use a rapid coprecipitation technique using lanthanum phosphate as a coprecipitant for preconcentration of iron(III) and lead in their flame atomic absorption spectrometric determination. Indium as an internal standard was added to the initial sample solution together with lanthanum and phosphoric acid; the coprecipitation of iron(III) and lead was then carried out at pH about 3. After measuring the atomic absorbances of iron, lead, and indium in the final sample solution, we determined the contents of iron(III) and lead in the original sample solution by using the internal standardization with indium. In this method, complete collection of the precipitate was not required after the coprecipitation of iron(III), lead, and indium, because the ratio of the recovery of iron(III) or lead to that of indium was almost constant regardless of the recovery of the precipitate. This method was simple and rapid, and was available for the determination of 2-300 micrograms L-1 of iron(III) and 5-400 micrograms L-1 of lead in some water samples.  相似文献   
9.
A determination method for lead in waste water and effluent was studied using flame atomic absorption spectrometry after preconcentration of lead by the rapid coprecipitation technique with gallium phosphate. Lead ranging from 0.5 to 50 microg was quantitatively coprecipitated with gallium phosphate from 100-150 mL sample solution (pH approximately 5). The presence of gallium phosphate did not affect the atomic absorbance of lead. Since the concentration of gallium in the final sample solution is also measurable by flame atomic absorption spectrometry at 250.0 nm without further dilution, the rapid coprecipitation technique, which does not require complete collection of the precipitate, becomes possible using a known amount of gallium and measuring the concentrations of both lead and gallium in the final sample solution by flame atomic absorption spectrometry. The 32 diverse ions tested gave no significant interferences in the lead determination. The method proposed here is rapid and has good reproducibility.  相似文献   
10.
Cadmium ranging from 1 - 8 ng could be coprecipitated quantitatively with lanthanum phosphate at pH 5 - 6 from up to 200 mL of river water samples spiked with 5 microg of indium as an internal standard. Cadmium and indium coprecipitated were measured by using electrothermal atomic absorption spectrometry. The cadmium content in the original sample solution could be determined by internal standardization with indium. Since complete collection of the precipitate and strict adjustment of the volume of the final solution after coprecipitation are not required in this method, the precipitate could be collected by using decantation and centrifugation, and then dissolved with 1 mL of about 2.4 mol L(-1) nitric acid. The proposed method is simple and rapid, and enrichment close to 200-times can be attained; the detection limit (3sigma, n = 6) was 0.63 ng L(-1) in 200 mL of the sample solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号