首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   4篇
物理学   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2012年   3篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
The O-H stretching region of the infrared spectra of a series of carboxylic acids in Xe matrices was investigated as a function of temperature. Upon increasing the temperature, the νO-H band site-components undergo reversible frequency blue-shifts, which are larger for the lowest-frequency components. This unprecedented observation indicates both that different types of O-H[middle dot][middle dot][middle dot]Xe specific interactions occur, depending on different trapping sites, and the prevalence of stronger interactions of this type for molecules trapped in sites corresponding to lower frequency νO-H band site-components. These results are in agreement with previous investigations pointing to an increased stabilization and larger νO-H frequency red-shifts in carboxylic acid∕Xe complexes bearing a specific H-bond like O-H[middle dot][middle dot][middle dot]Xe interaction. O-H[middle dot][middle dot][middle dot]Xe interaction energies were obtained theoretically and also estimated from the spectroscopic data. Changes in the interaction energies upon temperature variation were also evaluated.  相似文献   
2.
In this study the geometry optimization of monomeric and dimeric forms (D1, D2, and D3) of hydantoin molecule were done using DFT method employing 6?C31++G(d, p) basis set. Harmonic and anharmonic wavenumbers and infrared intensities were computed at the same theory level. Experimental IR spectrum was recorded in the region 400?C4000 cm?1. It has also been characterized by 1H and 13C NMR spectrum. The hydrogen bond (HB) interaction of hydantoin was analyzed via dimers of hydantoin. Detailed vibrational wavenumber shifts and all vibrational mode analyses were reported. Total energy distributions (TED, %) calculations were done to characterize the fundamentals.  相似文献   
3.
In this study, the theoretical conformation analysis of free dapsone has been performed by single point energy calculations at both semi-empirical PM3 and DFT/B3LYP-3-21G theory levels and three stable conformers were determined. Both the IR and Raman spectra of the molecule in solid phase have been recorded. The IR intensities and harmonic vibrational wavenumbers of each conformer were calculated by DFT method at B3LYP/6-31++G(d,p) theory level. For the fundamental characterization, the total energy distribution (TED) calculations of the vibrational modes were done using parallel quantum mechanic solution program (SQM) and the fundamental modes were assigned. The theoretical results are in agreement with the experimental ones.  相似文献   
4.
Attention deficit and hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders of childhood. It affects ~10% of the world’s population of children, and about 30–50% of those diagnosed in childhood continue to show ADHD symptoms later, with 2–5% of adults having the condition. Current diagnosis of ADHD is based on the clinical evaluation of the patient, and on interviews performed by clinicians with parents and teachers of the children, which, together with the fact that it shares common symptoms and frequent comorbidities with other neurodevelopmental disorders, makes the accurate and timely diagnosis of the disorder a difficult task. Despite the large effort to identify reliable biomarkers that can be used in a clinical environment to support clinical diagnosis, this goal has never been achieved hitherto. In the present study, infrared spectroscopy was used together with multivariate statistical methods (hierarchical clustering and partial least-squares discriminant analysis) to develop a model based on the spectra of blood serum samples that is able to distinguish ADHD patients from healthy individuals. The developed model used an approach where the whole infrared spectrum (in the 3700–900 cm−1 range) was taken as a holistic imprint of the biochemical blood serum environment (spectroscopic biomarker), overcoming the need for the search of any particular chemical substance associated with the disorder (molecular biomarker). The developed model is based on a sensitive and reliable technique, which is cheap and fast, thus appearing promising to use as a complementary diagnostic tool in the clinical environment.  相似文献   
5.
In this study, two types of hyperbranched (HB) polythioether could readily be achieved in a short time at ambient temperature through a thiol-Michael addition reaction. Dimethyl acetylenedicarboxylate (DMADC) or methyl propiolate (A2) and trimethylolpropane tris(3-mercaptopropionate) (B3) monomers were reacted using an organobase 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as a catalyst in chloroform at room temperature to provide subsequent HB polythioethers. The effect of TBD concentration on the polymerization was studied for the DMDAC case monitoring the molecular weight evolution against time. HB polythioethers were characterized using spectroscopic (nuclear magnetic resonance) and chromatographic (gel permeation chromatography with refractive index and light-scattering detectors) techniques. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 824–830  相似文献   
6.
Fulgurites are naturally occurring structures that are formed when lightning discharges reach the ground. In this investigation, the mineralogical compositions of core and shell compartments of a rare, iron-rich fulgurite from the Mongolian Gobi Desert were investigated by X-ray diffraction and micro-Raman spectroscopy. The interpretation of the Raman data was helped by chemometric analysis, using both multivariate curve resolution (MCR) and principal component analysis (PCA), which allowed for the fast identification of the minerals present in each region of the fulgurite. In the core of the fulgurite, quartz, microcline, albite, hematite, and barite were first identified based on the Raman spectroscopy and chemometrics analyses. In contrast, in the shell compartment of the fulgurite, the detected minerals were quartz, a mixture of the K-feldspars orthoclase and microcline, albite, hematite, and goethite. The Raman spectroscopy results were confirmed by X-ray diffraction analysis of powdered samples of the two fulgurite regions, and are consistent with infrared spectroscopy data, being also in agreement with the petrographic analysis of the fulgurite, including scanning electron microscopy with backscattering electrons (SEM-BSE) and scanning electron microscopy with energy dispersive X-ray (SEM-EDX) data. The observed differences in the mineralogical composition of the core and shell regions of the studied fulgurite can be explained by taking into account the effects of both the diffusion of the melted material to the periphery of the fulgurite following the lightning and the faster cooling at the external shell region, together with the differential properties of the various minerals. The heavier materials diffused slower, leading to the concentration in the core of the fulgurite of the iron and barium containing minerals, hematite, and barite. They first underwent subsequent partial transformation into goethite due to meteoric water within the shell of the fulgurite. The faster cooling of the shell region kinetically trapped orthoclase, while the slower cooling in the core area allowed for the extensive formation of microcline, a lower temperature polymorph of orthoclase, thus justifying the prevalence of microcline in the core and a mixture of the two polymorphs in the shell. The total amount of the K-feldspars decreases only slightly in the shell, while quartz and albite appeared in somewhat larger amounts in this compartment of the fulgurite. On the other hand, at the surface of the fulgurite, barite could not be stabilized due to sulfate lost (in the form of SO2 plus O2 gaseous products). The conjugation of the performed Raman spectroscopy experiments with the chemometrics analysis (PCA and, in particular, MCR analyses) was shown to allow for the fast identification of the minerals present in the two compartments (shell and core) of the sample. This way, the XRD experiments could be done while knowing in advance the minerals that were present in the samples, strongly facilitating the data analysis, which for compositionally complex samples, such as that studied in the present investigation, would have been very much challenging, if possible.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号