首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   2篇
数学   1篇
物理学   1篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The presented study deals with the scalarization techniques for solving multiobjective optimization problems. The Pascoletti–Serafini scalarization technique is considered, and it is attempted to sidestep two weaknesses of this method, namely the inflexibility of the constraints and the difficulties of checking proper efficiency. To this end, two modifications for the Pascoletti–Serafini scalarization technique are proposed. First, by including surplus variables in the constraints and penalizing the violations in the objective function, the inflexibility of the constraints is resolved. Moreover, by including slack variables in the constraints, easy-to-check statements on proper efficiency are obtained. Thereafter, the two proposed modifications are combined to obtain the revised Pascoletti–Serafini scalarization method. Theorems are provided on the relation of (weakly, properly) efficient solutions of the multiobjective optimization problem and optimal solutions of the proposed scalarized problems. All the provided results are established with no convexity assumption. Moreover, the capability of the proposed approaches is demonstrated through numerical examples.  相似文献   
2.
3.
Journal of Nanoparticle Research - Graphene and graphene oxide are potential candidates as nanofluids for thermal management applications. Here, we investigate the rheological properties and...  相似文献   
4.
Sulfur/dehydrogenated polyacrylonitrile composite has been studied as cathode material for lithium–sulfur rechargeable batteries. Nonetheless, capacity fading has been a challenge for the commercialization of batteries. In this study, characterization techniques of scanning electron microscopy, energy dispersive X-ray spectroscopy, elemental analysis, cyclic voltammetry, and electrochemical impedance spectroscopy are used to investigate the change of cathode properties with charge–discharge cycles. Elemental analysis reveals that sulfur accumulates on the surface of the composite at the end of charge, and the sulfur formation decreases with cycle number. Scanning electron microscopy observations indicate that cathode surface morphology changes significantly after several cycles. By modeling the electrochemical impedance spectra of the cell in different discharge states, we suggest that capacity fading arises mainly from the formation and accumulation of irreversible Li2S (and Li2S2) on the cathode surface.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号