首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   5篇
  国内免费   2篇
化学   75篇
力学   15篇
数学   17篇
物理学   31篇
  2022年   3篇
  2021年   1篇
  2020年   7篇
  2019年   9篇
  2018年   5篇
  2017年   4篇
  2016年   11篇
  2015年   3篇
  2014年   7篇
  2013年   13篇
  2012年   8篇
  2011年   14篇
  2010年   12篇
  2009年   5篇
  2008年   7篇
  2007年   6篇
  2006年   1篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1983年   1篇
排序方式: 共有138条查询结果,搜索用时 19 毫秒
1.
Detection and tracking of cooperative airborne targets are very important for military and also for civilian purposes. Previous research has shown that detection and tracking LASER offer high precision but their operation range is limited to less than 40 km even in good visibility propagation conditions. For long operation ranges, high power and bulky RADAR are required which can be significantly reduced by using active transponders on the cooperative target. A trimode LADAR/RADAR/Transponder system is investigated providing optimum performances. A L band Radar with active transponder is operated for all weather long ranges up to Low Earth Orbit satellites. The L mode is switched to a Mm wave mode RADAR for operation distances lower than 350 km and to an accurate LASER mode for the final tracking steps.  相似文献   
2.
Muoniated free radicals have been detected in muon-irradiated aqueous solutions of acetone at high temperatures and pressures. At temperatures below 250 degrees C, the radical product is consistent with muonium addition to the keto form of acetone. However, at higher temperatures, a different radical was detected, which is attributed to muonium addition to the enol form. Muon hyperfine coupling constants have been determined for both radicals over a wide range of temperatures, significantly extending the range of conditions under which these radicals and the keto-enol equilibrium have been studied.  相似文献   
3.
A novel, sensitive and selective adsorptive stripping procedure for simultaneous determination of iron, copper and cadmium is presented. The method is based on the adsorptive accumulation of thymolphthalexone (TPN) complexes of these elements onto a hanging mercury drop electrode, followed by reduction of adsorbed species by voltammetric scan using differential pulse modulation. The influences of control variables on the sensitivity of the proposed method for the simultaneous determination of iron, copper and cadmium were studied using the Derringer desirability function. The optimum analytical conditions were found to be TPN concentration of 2.0 μM, pH of 9.5, and accumulation potential at ?0.4 V vs. Ag/AgCl with an accumulation time of 60 s. The peak currents are proportional to the concentration of iron, copper and cadmium over the 1–80, 0.5–100 and 1–100 ng mL?1 ranges with detection limits of 0.5, 0.4 and 0.9 ng mL?1, respectively. The R.S.D. at a concentration level of 20 ng mL?1 of iron, copper and cadmium were 2.5%, 0.9% and 1.5% (n=6), respectively. The procedure was applied to the simultaneous determination of iron, copper and cadmium in the tap water and some synthetic samples with satisfactory results.  相似文献   
4.
This paper demonstrates the utilization of 3D semispherical shaped microelectrodes for dielectrophoretic manipulation of yeast cells. The semispherical microelectrodes are capable of producing strong electric field gradients, and in turn dielectrophoretic forces across a large area of channel cross‐section. The semispherical shape of microelectrodes avoids the formation of undesired sharp electric fields along the structure and also minimizes the disturbance of the streamlines of nearby passing fluid. The advantage of semispherical microelectrodes over the planar microelectrodes is demonstrated in a series of numerical simulations and proof‐of‐concept experiments aimed toward immobilization of viable yeast cells.  相似文献   
5.
In this paper, a novel catalyst is introduced based on the immobilization of palladium on modified magnetic graphene oxide nanoparticles. The catalyst is characterized by several methods, including transmission electron microscopy, scanning electron microscopy, X‐ray fluorescence, vibrating‐sample magnetometer, Fourier transform‐infrared and dynamic light scattering (DLS) analysis. The activity of the catalyst was investigated in the synthesis of 4(3H)‐quinazolinones via Pd‐catalyzed carbonylation‐cyclization of N‐(2‐bromoaryl) benzimidamides by Mo (CO)6. The Mo (CO)6 is used as a carbon monoxide source for performing the reaction under mild conditions. The catalyst showed good reusability, and no change in activity was observed after 10 cycles of recovery.  相似文献   
6.
Seven novel complexes (C1–C7) were synthesized by the interaction between Cu(I) metal cation, L1, L2, L3, X and PPh3, where L1–L3 are derivatives of ((pyridine-2-ylmethylene)amino)phenol imine ligands and X = Cl, Br, I, NCS. All the complexes were characterized using infrared, 1H NMR and 31P NMR spectroscopies. The crystal structures of C1–C7 were also determined using single-crystal X-ray diffraction. The organization of the crystal structures and the intermolecular interactions are discussed. The supramolecular assemblies are driven by cooperative π…π interactions and hydrogen bonds, followed by CH…π linkages. The potential anticancer effect of C1–C7 was assessed for human glioblastoma cells using several anticancer experiments, which showed that these complexes have marked anticancer property against U87 cells. It was also found that the minimum and maximum anticancer effects are shown by C3- and C4-treated samples, respectively. Furthermore, theoretical approaches were used to investigate the nature of metal–ligand interactions which suggest a closed-shell and electrostatic character for Cu…N, Cu…P and Cu…X bonds.  相似文献   
7.
8.
Alanine is used as a transfer standard dosimeter for gamma ray and electron beam calibration. An important factor affecting its dosimetric response is humidity which can lead to errors in absorbed dose calculations. Ab initio molecular dynamics calculations were performed to determine the environmental effects on the electron paramagnetic resonance (EPR) parameters of L-α-alanine radicals in acidic and alkaline solutions. A new result, not dissimilar to the closed-shell amino acid molecule alanine, is that the non-zwitterionic form of the alanine radical is the stable form in the gas phase while the zwitterionic neutral alanine radical is not a stable structure in the gas phase. Geometric and EPR parameters of radicals in both gas and solution phases are found to be dependent on hydrogen bonding of water molecules with the polar groups and on dynamic solvation. Calculations on the optimized free radicals in the gas phase revealed that for the neutral radical, hydrogen bonding to water molecules drives a decrease in the magnitudes of g-tensor components g xx and g yy without affecting neither g zz component nor the hyperfine coupling constants (HFCCs). The transfer from the gas to solution phase of the alanine radical anion is accompanied with an increase in the spin density on the carboxylic group's oxygen atoms. However, for the neutral radical, this transfer from gas to solution phase is accompanied with the decrease in the spin density on oxygen atoms. Calculated isotropic HFCCs and g-tensor of all radicals are in good agreement with experiment in both acidic and alkaline solutions.  相似文献   
9.
Transport in Porous Media - In this study, a novel triple pore network model (T-PNM) is introduced which is composed of a single pore network model (PNM) coupled to fractures and micro-porosities....  相似文献   
10.
Random dynamics of the Morris-Lecar neural model   总被引:1,自引:0,他引:1  
Determining the response characteristics of neurons to fluctuating noise-like inputs similar to realistic stimuli is essential for understanding neuronal coding. This study addresses this issue by providing a random dynamical system analysis of the Morris-Lecar neural model driven by a white Gaussian noise current. Depending on parameter selections, the deterministic Morris-Lecar model can be considered as a canonical prototype for widely encountered classes of neuronal membranes, referred to as class I and class II membranes. In both the transitions from excitable to oscillating regimes are associated with different bifurcation scenarios. This work examines how random perturbations affect these two bifurcation scenarios. It is first numerically shown that the Morris-Lecar model driven by white Gaussian noise current tends to have a unique stationary distribution in the phase space. Numerical evaluations also reveal quantitative and qualitative changes in this distribution in the vicinity of the bifurcations of the deterministic system. However, these changes notwithstanding, our numerical simulations show that the Lyapunov exponents of the system remain negative in these parameter regions, indicating that no dynamical stochastic bifurcations take place. Moreover, our numerical simulations confirm that, regardless of the asymptotic dynamics of the deterministic system, the random Morris-Lecar model stabilizes at a unique stationary stochastic process. In terms of random dynamical system theory, our analysis shows that additive noise destroys the above-mentioned bifurcation sequences that characterize class I and class II regimes in the Morris-Lecar model. The interpretation of this result in terms of neuronal coding is that, despite the differences in the deterministic dynamics of class I and class II membranes, their responses to noise-like stimuli present a reliable feature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号