首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   4篇
化学   14篇
力学   1篇
物理学   17篇
  2023年   1篇
  2021年   2篇
  2020年   4篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2011年   1篇
  2010年   3篇
  2005年   3篇
  2003年   2篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1994年   1篇
  1989年   1篇
  1984年   1篇
  1970年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
Transparent carbon nanotube coatings   总被引:1,自引:0,他引:1  
Thin networks of carbon nanotubes (CNTs) are sprayed onto glass or plastic substrates in order to obtain conductive transparent coatings. Transparency and conductivity at room temperature of different CNT material are evaluated. CNT coatings maintain their properties under mechanical stress, even after folding the substrate. At a transparency of 90% for visible light we observe a surface resistivity of 1 kΩ/sq which is already a promising value for various applications.  相似文献   
2.
In recent years, various functionalization strategies for transition‐metal dichalcogenides have been explored to tailor the properties of materials and to provide anchor points for the fabrication of hybrid structures. Herein, new insights into the role of the surfactant in functionalization reactions are described. Using the spontaneous reaction of WS2 with chloroauric acid as a model reaction, the regioselective formation of gold nanoparticles on WS2 is shown to be heavily dependent on the surfactant employed. A simple model is developed to explain the role of the chosen surfactant in this heterogeneous functionalization reaction. The surfactant coverage is identified as the crucial element that governs the dominant reaction pathway and therefore can severely alter the reaction outcome. This study shows the general importance of the surfactant choice and how detrimental or beneficial a certain surfactant can be to the desired functionalization.  相似文献   
3.
Polarized raman spectroscopy on isolated single-wall carbon nanotubes   总被引:2,自引:0,他引:2  
Polarized micro-Raman spectroscopy has been performed on spatially separated single-wall carbon nanotubes (SWNTs) in the form of individual nanotubes or thin ropes of only a few SWNTs. Different from bulk samples, the Raman spectra are composed of well-resolved peaks which allow a direct comparison of experimental data with theoretical calculations. Orientation-dependent measurements reveal maximum intensity of all Raman modes when the nanotubes are aligned parallel to the polarization of the incident laser light. The angular dependences clearly deviate from the selection rules predicted by theoretical studies. These differences are attributed to depolarization effects caused by the strongly anisotropic geometry of the nanotubes and to electronic resonance effects for excitation at 633 nm.  相似文献   
4.
This communication describes the electrochemical properties of thin pyrolytic carbon (PyC) films created using a reliable, non-catalytic chemical vapour deposition (CVD) process. After deposition, the electron transfer characteristics of the films are optimised using a simple oxygen plasma treatment. The redox probes Ru(NH3)63+/2+, Fe(CN)63?/4? and Fe3+/2+ are employed to demonstrate that the resulting material is endowed with a large electrochemical surface area and outstanding electron transfer properties. Atomic force microscopy (AFM), Raman and X-ray photoelectron spectroscopy (XPS) are used to elucidate the morphology and chemical composition of the electrode surfaces. This material represents a new class of carbon electrode, and its large densities of edge-plane sites and oxygenated functionalities make it an ideal candidate for electrochemical sensor applications.  相似文献   
5.
6.
The pressure dependence of the high-energy Raman modes in single- and multi-walled carbon nanotubes was measured in the range 0–10 GPa. We found the pressure coefficient to be linear in both materials but 25% smaller in MWNT. Given that the curvature effects on vibrational properties of the rolled-up graphene sheets are small, we can explain this difference simply with elasticity theory. Received: 17 May 1999 / Accepted 18 May 1999 / Published online: 4 August 1999  相似文献   
7.
Hydrogen storage in sonicated carbon materials   总被引:6,自引:0,他引:6  
The hydrogen storage in purified single-wall carbon nanotubes (SWNTs), graphite and diamond powder was investigated at room temperature and ambient pressure. The samples were sonicated in 5 M HNO3 for various periods of time using an ultrasonic probe of the alloy Ti-6Al-4V. The goal of this treatment was to open the carbon nanotubes. The maximum value of overall hydrogen storage was found to be 1.5 wt %, as determined by thermal desorption spectroscopy. The storage capacity increases with sonication time. The sonication treatment introduces particles of the Ti alloy into the samples, as shown by X-ray diffraction, transmission electron microscopy, and chemical analysis. All of the hydrogen uptake can be explained by the assumption that the hydrogen is only stored in the Ti-alloy particles. The presence of Ti-alloy particles does not allow the determination of whether a small amount of hydrogen possibly is stored in the SWNTs themselves, and the fraction of nanotubes opened by the sonication treatment is unknown. Received: 18 December 2000 / Accepted: 18 December 2000 / Published online: 9 February 2001  相似文献   
8.
Covalently tethering photosensitizers to catalytically active 1T-MoS2 surfaces holds great promise for the solar-driven hydrogen evolution reaction (HER). Herein, we report the preparation of two new RuII-complex-functionalized MoS2 hybrids [RuII(bpy)2(phen)]-MoS2 and [RuII(bpy)2(py)Cl]-MoS2. The influence of covalent functionalization of chemically exfoliated 1T-MoS2 with coordinating ligands and RuII complexes on the HER activity and photo-electrochemical performance of this dye-sensitized system was studied systematically. We find that the photo-electrochemical performance of this RuII-complex-sensitized MoS2 system is highly dependent on the surface extent of photosensitizers and the catalytic activity of functionalized MoS2. The latter was strongly affected by the number and the kind of functional groups. Our results underline the tunability of the photovoltage generation in this dye-sensitized MoS2 system by manipulation of the surface functionalities, which provides a practical guidance for smart design of future dye-sensitized MoS2 hydrogen production devices towards improved the photofuel conversion efficiency.  相似文献   
9.
10.
Two-dimensional (2D) molybdenum disulfide (MoS2) holds great promise in electronic and optoelectronic applications owing to its unique structure and intriguing properties. The intrinsic defects such as sulfur vacancies (SVs) of MoS2 nanosheets are found to be detrimental to the device efficiency. To mitigate this problem, functionalization of 2D MoS2 using thiols has emerged as one of the key strategies for engineering defects. Herein, we demonstrate an approach to controllably engineer the SVs of chemically exfoliated MoS2 nanosheets using a series of substituted thiophenols in solution. The degree of functionalization can be tuned by varying the electron-withdrawing strength of substituents in thiophenols. We find that the intensity of 2LA(M) peak normalized to A1g peak strongly correlates to the degree of functionalization. Our results provide a spectroscopic indicator to monitor and quantify the defect engineering process. This method of MoS2 defect functionalization in solution also benefits the further exploration of defect-free MoS2 for a wide range of applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号