首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   3篇
数学   1篇
物理学   5篇
  2013年   3篇
  2000年   4篇
  1979年   1篇
  1974年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Electrical resistance and X-ray diffraction measurements and also optical observations under a polarizing microscope were made on CuCl to pressures in excess of 12.5 GPa at room temperature using a diamond anvil cell. Resistance measurements were also performed in a piston-cylinder apparatus to pressures of approximately 5.5 GPa at room temperature. Three samples of CuCl prepared by different methods were examined. No anomalous pressure dependence in electrical resistance was found in the pressure range studied, and no dramatic changes in optical transmission were observed up to pressures of approximately 10.0 GPa. Optical observations and X-ray diffraction measurements indicate the existence of four phases in the pressure range studied, including a nonconducting black opaque phase which grows with time when CuCl is left for several days at the highest pressures.  相似文献   
2.
Energy spectra for decaying 2D turbulence in a bounded domain   总被引:1,自引:0,他引:1  
We use results derived in the framework of the replica approach to study the liquid-glass thermodynamic transition. The main results are derived without using replicas and applied to the study of the Lennard-Jones binary mixture introduced by Kob and Andersen. We find that there is a phase transition due to the entropy crisis. We compute both analytically and numerically the value of the phase transition point T(K) and the specific heat in the low temperature phase.  相似文献   
3.
This work investigates the behaviour of two alternative systems that model the crucial event involved in any ELISA test, i.e. the molecular recognition between an antigen and its specific antibody on a solid phase, and its measurement. Each approach is devised with the goal of making possible a single-step, separation and wash-free amperometric magneto-immunosensor. Magnetic particles (MBs) are used as support for the immobilization of rabbit IgGs that are recognized by the specific anti-rabbit IgG-HRP. The assay protocol is based on the use of a series of small “reservoirs” containing phosphate buffer, hydroquinone, anti-rabbit IgG-HRP and an appropriate amount of MB-rabbit IgG. After a brief incubation, the content of each “reservoir” is transferred to one of the wells of a 8-well magnetized-screen-printed electrode strip. The resulting MB-IgG-anti-IgG-HRP chain, is then concentrated on the working electrode surface for electrochemical measurement. Two different approaches to monitor this immunological reaction are investigated. The first one is based on the enzyme-channeling principle (ECP) and involves the use of a second enzyme, glucose oxidase (GOD), immobilized on the working electrode previously modified with Prussian Blue. Since the H2O2 produced by GOD is the co-substrate of the HRP enzyme, glucose is added into the well and the current, generated by the residual H2O2, is measured. The second, more direct, approach is performed without exploiting ECP (no GOD enzyme), by adding H2O2 into the well and measuring the current generated by the HRP product on a pristine screen-printed electrode. Both approaches yielded a typical sigmoidal binding curve, illustrating the discrimination between the signal produced by the immuno-bound HRP concentrated on the electrode surface, and the background signal due to HRP in the bulk solution.
Figure
Schematic representation of the single-step immunoassay: in the upper part, the content of the ‘reservoirs’ (containing MB-rabbit IgG, TPi, HQ and various concentration levels of anti-rabbit IgG-HRP) are transferred to an 8 well/sensor strip coupled with an special magnetic support which can draw the IMBs to the electrode surface; the lower part shows the two electrochemical approaches proposed to monitor the immunological reaction  相似文献   
4.
One- and two-phonon room temperature Raman spectra of GaP were measured to 128 kbar using a diamond-anvil pressure cell. Linear and quadratic pressure coefficients were determined for phonons at Γ, L, (X→K), and Σ. The results suggest possible “soft” mode behavior for TA(L) and TA(X→K) phonons.  相似文献   
5.
6.
Abstract

High pressure and temperature structural changes for RDX were investigated to 7.0 GPa and 570 K in a diamond anvil cell apparatus using FTIR absorption, optical microscopy, and energy-dispersive powder x-ray diffraction techniques. Three distinct solid phases were observed. The effects of pressure on the thermal decomposition kinetics as a function of RDX pressure were investigated using an infrared absorption technique. Solid phase I was found to have a pressure enhanced reaction rate with an energy and volume of activation of 51 Kcal/mole and -5.6 cc/mole respectively. Solid II was not observed to react and the observed reaction rate of Solid III decreased with increasing pressure.  相似文献   
7.
Abstract

As many of you may know already, Alvin Van Valkenburg died on December 5, 1991 in Tucson, Arizona at the age of seventy-eight. He was the last surviving scientist of four who share the honor of co-inventing the diamond anvil high pressure cell (DAC), now recognized as a world-class instrument for scientific research. In August of 1992 Professor A. Ruoff asked me to write a short article for AIRAPT describing Van Valkenburg's role in inventing the DAC because of its importance as a tool in high pressure research. He suggested that as a former colleague and as a scientist who has spent most of his professional career in high pressure research, I was perhaps the one person who could describe best the role Van Valkenburg played in the invention and development of the DAC. After some deliberation, I agreed to do it, mainly for three reasons: (1) the subject matter, indeed, is important to the history of science, and, in particular, to the high pressure community and should be documented; (2) all four co-inventors deserve the honor; and (3) it is true perhaps that there is no one more appropriate to undertake this task because I was at the National Bureau of Standards, NBS, (now the National Institute of Standards and Technology, NIST) at the time and personally witnessed the process of the invention of the DAC.  相似文献   
8.
Editorial Comment Last month we presented, as a Special Feature, a set of five articles that constituted a Commentary on the fundamentals and mechanism of electrospray ionization (ESI). These articles produced some lively discussion among the authors on the role of electrochemistry in ESI. Six authors participated in a detailed exchange of views on this topic, the final results of which constitute this month's Special Feature. We particularly hope that younger scientists will find value in this month's Special Feature, not only for the science that it teaches but also what it reveals about the processes by which scientific conclusions are drawn. To a degree, the contributions part the curtains on these processes and show science in action. We sincerely thank the contributors to this discussion. The give and take of intellectual debate is not always easy, and to a remarkable extent this set of authors has maintained good humor and friendships, even when disagreeing strongly on substance. Graham Cooks and Richard Caprioli Copyright 2000 John Wiley & Sons, Ltd.  相似文献   
9.
A survey of derivatization strategies and prospective derivatization reactions for conversion of simple alkenes and alkynes to 'electrospray-active' species is presented. General synthetic strategies are discussed and illustrative examples of prospective derivatives prepared from model compounds are presented along with their electrospray ionization (ES) mass spectra. The identified derivatives of these neutral, nonpolar analytes are either ionic or are ionizable in solution through Bronsted acid/base chemistry, by Lewis acid/base chemistry, or by chemical or electrochemical electron-transfer chemistry. Once ionized, the derivatives are expected to be amenable to detection by electrospray ionization-mass spectrometry. Derivatives are identified for positive and negative ion analysis of both alkenes and alkynes. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号