首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
化学   10篇
晶体学   1篇
物理学   11篇
  2023年   1篇
  2022年   1篇
  2019年   1篇
  2017年   1篇
  2013年   2篇
  2012年   2篇
  2008年   1篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1995年   1篇
排序方式: 共有22条查询结果,搜索用时 31 毫秒
1.
2.
The p-type Si layer in a-Si and μc-Si solar cells on foil needs to fulfil several important requirements. The layer is necessary to create the electric field that separates the photo-generated charge carriers; the doping also increases the conductivity to conduct the photocurrent to the front contact; on the other hand, the p-layer should transmit the incident light efficiently to the intrinsic absorber layer. We show that it is possible to study TEM samples prepared, for analysis of possible layer defects, by focussed ion beam milling to detect boron and carbon concentrations as low as 1020 cm-3, using core-loss EELS combined with numerical analysis. We control the band gap and activation energy of p-a-SiC by varying the B2H6 and CH4 flow during deposition in the process chamber. We have found a linear relation between the activation energy of the dark conductivity Eact and the optical band gap E04. Modelling shows that the optimum efficiency in nip solar cells is obtained when the p-a-SiC band gap is slightly larger than the band gap of the absorber layer. We have assessed the potential of core-loss EELS for detecting B and C concentrations as low as 1020 cm-3 in a spatially resolved manner, and of low-loss EELS as a probe of the local variations in plasmon energy.  相似文献   
3.
Direct ethanol fuel cells are attractive power sources based on a biorenewable, high energy-density fuel. Their efficiency is limited by the lack of active anode materials which catalyze the breaking of the C−C bond coupled to the 12-electron oxidation to CO2. We report shape-controlled PtNiRh octahedral ethanol oxidation electrocatalysts with excellent activity and previously unachieved low onset potentials as low as 0.1 V vs. RHE, while being highly selective to complete oxidation to CO2. Our comprehensive characterization and in situ electrochemical ATR studies suggest that the formation of a ternary surface site ensemble around the octahedral Pt3Ni1Rhx nanoparticles plays a crucial mechanistic role for this behavior.  相似文献   
4.
Electron holography is used to measure electrostatic potential profiles across reverse-biased Si p-n junctions in situ in the transmission electron microscope. A novel sample geometry based on focused ion-beam milling is developed, and results are obtained for a range of sample thicknesses and bias voltages to allow the holographic contrast to be interpreted. The physical and electrical nature of the sample surface, which is affected by sample preparation and electron beam irradiation, is discussed.  相似文献   
5.
Porous particle superstructures of about 15 nm diameter, consisting of ultrasmall nanoparticles of iridium and iridium dioxide, are prepared through the reduction of sodium hexachloridoiridate(+IV) with sodium citrate/sodium borohydride in water. The water-dispersible porous particles contain about 20 wt % poly(N-vinylpyrrolidone) (PVP), which was added for colloidal stabilization. High-resolution transmission electron microscopy confirms the presence of both iridium and iridium dioxide primary particles (1–2 nm) in each porous superstructure. The internal porosity (≈58 vol%) is demonstrated by electron tomography. In situ transmission electron microscopy up to 1000 °C under oxygen, nitrogen, argon/hydrogen (all at 1 bar), and vacuum shows that the porous particles undergo sintering and subsequent compaction upon heating, a process that starts at around 250 °C and is completed at around 800 °C. Finally, well-crystalline iridium dioxide is obtained under all four environments. The catalytic activity of the as-prepared porous superstructures in electrochemical water splitting (oxygen evolution reaction; OER) is reduced considerably upon heating owing to sintering of the pores and loss of internal surface area.  相似文献   
6.
Recently proposed bimetallic octahedral Pt–Ni electrocatalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cell (PEMFC) cathodes suffer from particle instabilities in the form of Ni corrosion and shape degradation. Advanced trimetallic Pt-based electrocatalysts have contributed to their catalytic performance and stability. In this work, we propose and analyse a novel quaternary octahedral (oh-)Pt nanoalloy concept with two distinct metals serving as stabilizing surface dopants. An efficient solvothermal one-pot strategy was developed for the preparation of shape-controlled oh-PtNi catalysts doped with Rh and Mo in its surface. The as-prepared quaternary octahedral PtNi(RhMo) catalysts showed exceptionally high ORR performance accompanied by improved activity and shape integrity after stability tests compared to previously reported bi- and tri-metallic systems. Synthesis, performance characteristics and degradation behaviour are investigated targeting deeper understanding for catalyst system improvement strategies. A number of different operando and on-line analysis techniques were employed to monitor the structural and elemental evolution, including identical location scanning transmission electron microscopy and energy dispersive X-ray analysis (IL-STEM-EDX), operando wide angle X-ray spectroscopy (WAXS), and on-line scanning flow cell inductively coupled plasma mass spectrometry (SFC-ICP-MS). Our studies show that doping PtNi octahedral catalysts with small amounts of Rh and Mo suppresses detrimental Pt diffusion and thus offers an attractive new family of shaped Pt alloy catalysts for deployment in PEMFC cathode layers.

PtNi nano-octahedra with Rh and Mo dopants are highly active catalysts for the oxygen reduction reaction with excellent stability and shape integrity. We investigate the morphological, structural, and compositional evolution during stability testing.  相似文献   
7.
Aberration correction leads to a substantial improvement in the directly interpretable resolution of transmission electron microscopes. Correction of the aberrations has been achieved electron-optically through a hexapole-based corrector and also indirectly by computational analysis of a focal or tilt series of images. These direct and indirect methods are complementary, and a combination of the two offers further advantages. Materials characterization has benefitted from the reduced delocalization and higher resolution in the corrected images. It is now possible, for example, to locate atomic columns at surfaces to higher accuracy and reliability. This article describes the JEM-2200FS in Oxford, which is equipped with correctors for both the image-forming and probe-forming lenses. Examples of the use of this instrument in the characterization of nanocrystalline catalysts are given together with initial results combining direct and indirect methods. The double corrector configuration enables direct imaging of the corrected probe, and a potential confocal imaging mode is described. Finally, modifications to a second generation instrument are outlined.  相似文献   
8.
The ability of certain magnetic minerals to acquire a remanent magnetization that opposes the direction of the Earth's magnetic field has fascinated rock magnetists since its discovery in 1951. Here, we determine the origin of this phenomenon, which is termed self-reversed thermoremanent magnetization (SR-TRM). We present direct transmission electron microscopy observations of negative exchange coupling across antiphase domain boundaries (APBs) in ilmenite-hematite. This coupling is linked intrinsically to the origin of SR-TRM and is responsible for the formation of two new classes of magnetic domain wall at APBs. We present simulations of the chemical and magnetic structure of the APBs and show that SR-TRM is generated by coupling between strongly ferrimagnetic Ti-rich domains and weakly ferrimagnetic Fe-rich domains, which form during the transition from short- to long-range cation order.  相似文献   
9.
Many different dopant-profiling techniques are available for semiconductor device characterization. However, with length scales shrinking rapidly, only transmission electron microscopy (TEM) techniques promise to fulfil the spatial resolution required for the characterization of future device generations. Here, we use three advanced TEM techniques, off-axis electron holography, Fresnel imaging (in-line electron holography) and Foucault imaging, to examine a focused ion beam-prepared silicon p–n junction device. Experiments are carried out on electrically unbiased samples and with an electrical bias applied in situ in the TEM. Simulations are matched to experimental data to allow quantitative conclusions to be drawn about the underlying electrostatic potential distributions. The off-axis electron holography and Fresnel results are compared to assess whether the techniques are consistent, and whether they can be used to provide complementary information about dopant potentials in semiconductor devices.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号