首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   0篇
  国内免费   1篇
化学   30篇
力学   3篇
数学   7篇
物理学   27篇
  2005年   1篇
  2004年   1篇
  2002年   4篇
  2001年   1篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   5篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   5篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1982年   5篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1974年   1篇
  1971年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有67条查询结果,搜索用时 109 毫秒
1.
By making creep and recoverable creep measurements of a nearly monodisperse low molecular weight poly(methyl phenyl siloxane) sample, we have found on decreasing temperature towardsT g that there is continuously a change in the viscoelastic spectrum concomitant with a decrease of the steadystate recoverable compliance. This behavior is exactly the same as previously observed in low molecular weight poly(styrene), proving that this spectacular anomaly in the viscoelasticity of low molecular weight polymers is general and deserves an explanation. Photon correlation spectroscopic measurements performed on the same sample have extended the observation of the viscoelastic response to shorter times and the result corroborates the trend of variation established by the creep data.Dedicated to Prof.Dr. E. W. Fischer on his 65th Birthday. Prof.Dr. Fischer is known for his valuable contribution to fosterine, international collaboration of research in polymer science. This work is an example of his contribution because it would not be possible without him bringing us together. One of us (KLN) would like to take this opportunity to thank Prof. Dr. Fischer for his unwaiving support of the 1st (Crete) and the 2nd (Alicante) International Discussion Meeting on Relaxations in Complex Systems  相似文献   
2.
The evolution of the viscoelastic behavior of an epoxy resin at various stages of curing has been followed with the changes in the retardation spectrum. The creep J(t) and recoverable creep compliance Jr(t) curves of the neat epoxy resin Epon l00lF (Shell) were determined at temperatures between 30 and 77°C. The viscosity decreased over 8 orders of magnitude as the temperature was increased. Specimens with eight stages of network development were prepared by reacting all of the epoxy resin's oxirane rings with amine hydrogens from varying ratios of a monofunctional amine (methyl aniline) and a tetrafunctional amine 4,4′-diamino diphenyl sulfone (DDS). Preparations in which 25, 35, and 40% DDS were used did not result in a molecular network, so they were viscoelastic liquids. With 45% DDS, the product had a nascent network and was judged to be just beyond the point of incipient gelation. The remaining preparations from 0.50, 0.60, 0.70, and 1.0 DDS yielded tighter less compliant molecular networks. The creep and recoverable compliance curves were measured over a range of temperatures above the glass transition temperature, Tg. They were reduced to Tg, and retardation spectra L(ln τ) were calculated.  相似文献   
3.
Creep and differential scanning calorimetry (DSC) measurements have been used to study the physical aging behavior of a polyetherimide. Isothermal aging temperatures ranged from 160°C to Tg with aging times ranging from 10 min to 8 days. The only measurable effect of physical aging on the short-time creep curves is a shift of the creep compliance to longer times. Andrade plots of the compliance versus the cube root of time are linear at short times with the slope β decreasing with increasing aging time to a constant value once equilibrium is reached. Log β3 is related directly to the degree to which the creep curves shift to longer times with physical aging, and is used in this work as a measure of physical aging. A reduced curve of log β3 versus log aging time is obtained for the aging temperatures investigated by appropriate vertical and horizontal shifts. The enthalpy change during aging increases linearly with the logarithm of the aging time, ta, leveling off at equilibrium at values which increase with decreasing aging temperature. Hence, both nonequilibrium and equilibrium temperature shift factors can be calculated from the DSC data. Good agreement is observed between the equilibrium temperature shift factors obtained from the creep and DSC data. The temperature dependence of the nonequilibrium temperature shift factors is found to be an order of magnitude smaller than that of the equilibrium shift factors. The time scales to reach equilibrium for enthalpy and for mechanical measurements are found to be the same within experimental error. © 1995 John Wiley & Sons, Inc.  相似文献   
4.
5.
6.
Data on the temperature dependence of viscosity obtained on three different polystyrenes with narrow molecular weight distributions are fitted to the Vogel, Fulcher, Tamman, and Hesse (VTFH) equation as well as to two intersecting Arrhenius lines. Both fits are optimized by means of computer programs. The data were chosen to fit the requirements stated by Boyer. The results of the analyses support the earlier conclusions that temperature-dependent viscosity data do not indicate the presence of any liquid-liquid transition TLL above the glass temperature Tg. In addition, evidence is presented which indicates that the viscosity at Tg of high-molecular-weight polystyrenes is proportional to the 3.4 power of the molecular weight. Hence Tg is not an isoviscous temperature.  相似文献   
7.
Differential scanning calorimetry (DSC) and infrared spectroscopy (IR) were used to monitor the degree of cure of partially cured epoxy resin (Epon 828/MDA) samples. The extent of cure, as determined by residual heat of reaction, concurred with that determined by monitoring the infrared radiation absorbance of the epoxide group near 916 cm?l. The fictive temperature Tf, g was found to increase with the degree of cure, increasing rapidly during cure until reaching a value near the cure temperature Tc of 130°C (approximately 80% cure) where the material vitrified. The greatly reduced reaction rate during the final 20% of cure was not only a consequence of vitrification but, as revealed by infrared spectroscopy, the result of the depletion in the number of reactive epoxide groups. The endothermic peak areas and peak temperatures evident during the DSC scans were used as a measure of the extent of “physical aging” which took place during the cure of this resin, and after, fully cured samples were aged 37°C below their ultimate glass temperature for various periods of time. The rate of physical aging slowed as the temperature increment (Tt,g ? Tc) increased. Although an endothermic peak was evident after only 1 h of cure (Tf, g = 138.3°C), such a peak did not appear until fully cured samples were aged for 16 h or more. Enthalpy data revealed that for partially cured material, the fictive temperature Tf, a, reflecting physical aging, increased with curing time. In contrast, the Tf, a, for fully cured samples decreased with sub-Tg aging time. The characteristic jump in the heat capacity ΔCp which occurred at the Tf, g decreased as curing progressed. This decrease appears to be dependent upon the rotational and vibrational degrees of freedom of the glass. Finally, a graphical method of determining the fictive temperature Tf, a, of partially and fully cured epoxy material from measured endothermic peak areas was developed.  相似文献   
8.
Two distinguishable effects of thermal exposure of biaxially oriented poly(ethylene terephthalate) (PET) have been observed in the temperature range from room temperature to 140°C. Upon heating above the glass transition temperature Tg of the film an irreversible shrinkage of a few percent occurred with a concomitant decrease in the rate of creep. Some loss of orientation in the noncrystalline phase with an attendant slight increase in density is believed to be responsible. Since the film was anisotropic in its plane, different amounts and rates of shrinkage were observed along with differing thermal expansion coefficients in various directions relative to the primary optic axis. Upon cooling the 50% crystalline PET from above Tg to lower temperatures, reversible “physical aging” was observed. Creep rates were found to decrease with the residence time below Tg. As with purely amorphous polymers, the effects of the aging are removed by heating the specimen above Tg where the density of the amorphous phase achieves equilibrium values.  相似文献   
9.
10.
The use of the stretched-exponential function to represent both the relaxation function g(t)=(G(t)-G )/(G 0-G ) and the retardation function r(t) = (J +t/η-J(t))/(J -J 0) of linear viscoelasticity for a given material is investigated. That is, if g(t) is given by exp (?(t/τ)β), can r(t) be represented as exp (?(t/λ)µ) for a linear viscoelastic fluid or solid? Here J(t) is the creep compliance, G(t) is the shear modulus, η is the viscosity (η?1 is finite for a fluid and zero for a solid), G is the equilibrium modulus G e for a solid or zero for a fluid, J is 1/G e for a solid or the steady-state recoverable compliance for a fluid, G 0= 1/J 0 is the instantaneous modulus, and t is the time. It is concluded that g(t) and r(t) cannot both exactly by stretched-exponential functions for a given material. Nevertheless, it is found that both g(t) and r(t) can be approximately represented by stretched-exponential functions for the special case of a fluid with exponents β=µ in the range 0.5 to 0.6, with the correspondence being very close with β=µ=0.5 and λ=2τ. Otherwise, the functions g(t) and r(t) differ, with the deviation being marked for solids. The possible application of a stretched-exponential to represent r(t) for a critical gel is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号