首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学   1篇
物理学   10篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  1996年   2篇
  1994年   2篇
  1991年   4篇
排序方式: 共有11条查询结果,搜索用时 62 毫秒
1.
2.
3.
4.
5.
General relativity predicts the gravitational wave signatures of coalescing binary black holes. Explicit waveform predictions for such systems, required for optimal analysis of observational data, have so far been achieved primarily using the post-Newtonian (PN) approximation. The quality of this treatment is unclear, however, for the important late-inspiral portion. We derive late-inspiral waveforms via a complementary approach, direct numerical simulation of Einstein's equations. We compare waveform phasing from simulations of the last approximately 14 cycles of gravitational radiation from equal-mass, nonspinning black holes with the corresponding 2.5PN, 3PN, and 3.5PN orbital phasing. We find phasing agreement consistent with internal error estimates for either approach, suggesting that PN waveforms for this system are effective until the last orbit prior to final merger.  相似文献   
6.
A multilaboratory study was conducted to compare the automated BAX system and the standard cultural methods for detection of Listeria monocytogenes in foods. Six food types (frankfurters, soft cheese, smoked salmon, raw, ground beef, fresh radishes, and frozen peas) were analyzed by each method. For each food type, 3 inoculation levels were tested: high (average of 2 CFU/g), low (average of 0.2 CFU/g) and uninoculated controls. A total of 25 laboratories representing government and industry participated. Of the 2335 samples analyzed, 1109 were positive by the BAX system and 1115 were positive by the standard method. A Chi square analysis of each of the 6 food types, at the 3 inoculation levels tested, was performed. For all foods, except radishes, the BAX system performed as well as or better than the standard reference methods based on the Chi square results.  相似文献   
7.
8.
We present new ideas for evolving black holes through a computational grid without excision, which enable accurate and stable evolutions of binary black hole systems with the accurate determination of gravitational waveforms directly from the wave zone region. Rather than excising the black hole interiors, our approach follows the "puncture" treatment of black holes, but utilizing a new gauge condition which allows the black holes to move successfully through the computational domain. We apply these techniques to an inspiraling binary, modeling the radiation generated during the final plunge and ringdown. We demonstrate convergence of the waveforms and good conservation of mass-energy, with just over 3% of the system's mass converted to gravitational radiation.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号