首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   1篇
物理学   1篇
  2022年   1篇
  2019年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
A mesoscopic study of natural convection due to MWCNT-Fe3O4/Water hybrid nanofluid is conducted utilizing the Lattice Boltzmann Method. The test fluid is filled in a differentially heated rectangular enclosure. Effects of aspect ratio in the range of 0.5–2.0, Rayleigh number varying from 103 to 105 and nanocomposite volume fraction on heat and fluid flow characteristics and entropy generation have been illustrated. It is observed that the mean Nusselt number rises with the increase in Rayleigh number, while it falls as the aspect ratio increases. However, the mean Nusselt number enhances with the increase in MWCNT-Fe3O4 volume fraction up to 0.001. On further increasing the volume fraction, the mean Nusselt number shows either no significant rise or deterioration for the case of MWCNT-Fe3O4 nanocomposite. The dimensionless entropy generation number rises with the increase in the Rayleigh number. However, it falls with an increase in aspect ratio and dimensionless temperature difference. Interestingly in the case of increasing nanoparticle loading fraction, entropy generation number augments first, attains a maximum at 0.001 ?vol fraction of nanocomposite, and then it decreases. Nevertheless, at the low Rayleigh number, it keeps on rising with an increase in nanocomposite volume fraction. The best thermal performance is obtained for the cavity of 0.5 aspect ratio. A correlation for the mean Nusselt number is proposed.  相似文献   
2.
The present paper aims to investigate the reflection and refraction of quasi-longitudinal (qP) waves at the welded interface between rotating piezoelectric and FGPM half-spaces. The equation of motion and constitutive relations for both the media have been used to derive the expressions for reflection and refraction coefficients for various reflected and transmitted waves. Also, the energy ratios (dependent on incident angle) are calculated. Moreover, the sum of all energy ratios is approximately unity at each value of incident angle which ensures that the law of energy conservation at the interface. Moreover, it is observed that the reflection and refraction coefficients of various reflected and transmitted waves depend not only on the incident angle but also on the material constants of the medium, parameters of the electric potential, initial stress as well as rotation parameters of the two media. A particular case has been deduced to validate the present study. This investigation may have possible applications in the areas of signal processing, transduction, frequency shifting (a change in the velocity of surface waves and controlling the selectivity of a filter compensation) of individual devices.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号