首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   2篇
物理学   4篇
  2024年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2006年   1篇
  1996年   1篇
排序方式: 共有6条查询结果,搜索用时 109 毫秒
1
1.
2.
We describe a compact, reliable, and high-average-power femtosecond x-ray source and its first application to diffraction on protein crystal. The setup relies on a homemade Ti: sapphire system delivering 12 mJ at a 1 kHz repetition rate, associated with a small vacuum chamber especially designed for laser-plasma interaction and x-ray applications. This device allows the generation of 5 x 10(9) photons/s/sr at 8 keV and optimized x-ray irradiation of the studied sample, which can be placed close to the source. We present the diffraction pattern of a protein crystal in a divergent beam geometry, which is a first step to a subpicosecond x-ray diffraction experiment.  相似文献   
3.
In heme-based sensor proteins, ligand binding to heme in a sensor domain induces conformational changes that eventually lead to changes in enzymatic activity of an associated catalytic domain. The bacterial oxygen sensor FixL is the best-studied example of these proteins and displays marked differences in dynamic behavior with respect to model globin proteins. We report a mid-IR study of the configuration and ultrafast dynamics of CO in the distal heme pocket site of the sensor PAS domain FixLH, employing a recently developed method that provides a unique combination of high spectral resolution and range and high sensitivity. Anisotropy measurements indicate that CO rotates toward the heme plane upon dissociation, as is the case in globins. Remarkably, CO bound to the heme iron is tilted by ~30° with respect to the heme normal, which contrasts to the situation in myoglobin and in present FixLH-CO X-ray crystal structure models. This implies protein-environment-induced strain on the ligand, which is possibly at the origin of a very rapid docking-site population in a single conformation. Our observations likely explain the unusually low affinity of FixL for CO that is at the origin of the weak ligand discrimination between CO and O(2). Moreover, we observe orders of magnitude faster vibrational relaxation of dissociated CO in FixL than in globins, implying strong interactions of the ligand with the distal heme pocket environment. Finally, in the R220H FixLH mutant protein, where CO is H-bonded to a distal histidine, we demonstrate that the H-bond is maintained during photolysis. Comparison with extensively studied globin proteins unveils a surprisingly rich variety in both structural and dynamic properties of the interaction of a diatomic ligand with the ubiquitous b-type heme-proximal histidine system in different distal pockets.  相似文献   
4.
In fatty acid photodecarboxylase (FAP), light-induced formation of the primary radical product RCOO⋅ from fatty acid RCOO occurs in 300 ps, upon which CO2 is released quasi-immediately. Based on the hypothesis that aliphatic RCOO⋅ (spectroscopically uncharacterized because unstable) absorbs in the red similarly to aromatic carbonyloxy radicals such as 2,6-dichlorobenzoyloxy radical (DCB⋅), much longer-lived linear RCOO⋅ has been suggested recently. We performed quantum chemical reaction pathway and spectral calculations. These calculations are in line with the experimental DCB⋅ decarboxylation dynamics and spectral properties and show that in contrast to DCB⋅, aliphatic RCOO⋅ radicals a) decarboxylate with a very low energetic barrier and on the timescale of a few ps and b) exhibit little red absorption. A time-resolved infrared spectroscopy experiment confirms very rapid, ≪300 ps RCOO⋅ decarboxylation in FAP. We argue that this property is required for the observed high quantum yield of hydrocarbons formation by FAP.  相似文献   
5.
Various experiments show that the solute content in small coherent precipitates in their early stages of growth-coarsening is significantly lower than its equilibrium value and gradually increases with the particle size until equilibrium composition is reached. In this paper, we investigate the thermodynamic stability of a mono-dispersed assembly of coherent precipitates in a finite matrix by minimizing the total free energy of the system to account for this size effect observed for nano-phases. Both interfacial energy and misfit elastic energy were taken into account and simple regular solid solutions were considered for both phases. It is found that for small sizes, precipitates with a low solute content are favoured energetically. The solute content in precipitates decreases when increasing either interfacial energy or coherency misfit. The solute concentration in nano-particles is observed to increase with size. The asymptotic composition remains under the equilibrium concentration even for small misfits. The model was confronted to atom probe tomography experiments performed in FeCr system. Predictions exhibit a composition trend with precipitate size that is in good agreement with experiments.  相似文献   
6.
Direct amplitude and phase shaping of mid-infrared femtosecond pulses is realized with a calomel-based acousto-optic programmable dispersive filter transparent between 0.4 and 20 μm. The shaped pulse electric field is fully characterized with high accuracy, using chirped-pulse upconversion and time-encoded arrangement spectral phase interferometry for direct electric field reconstruction techniques. Complex mid-infrared pulse shapes at a center wavelength of 4.9 μm are generated with a spectral resolution of 14 cm(-1), which exceeds by a factor of 5 the reported experimental resolutions of calomel-based filters.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号