首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
化学   1篇
物理学   31篇
  2009年   1篇
  2007年   2篇
  2005年   3篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1983年   1篇
  1981年   1篇
  1978年   4篇
  1977年   2篇
  1976年   3篇
  1973年   1篇
排序方式: 共有32条查询结果,搜索用时 250 毫秒
1.
2.
GABA(C) (rho) receptors are members of the Cys-loop superfamily of neurotransmitter receptors, which includes nicotinic acetylcholine (nACh), 5-HT(3), and glycine receptors. As in other members of this family, the agonist binding site of GABA(C) receptors is rich in aromatic amino acids, but while other receptors bind agonist through a cation-pi interaction to a tryptophan, the GABA(C) binding site has tyrosine at the aligning positions. Incorporating a series of tyrosine derivatives at position 198 using unnatural amino acid mutagenesis reveals a clear correlation between the cation-pi binding ability of the side chain and EC(50) for receptor activation, thus demonstrating a cation-pi interaction between a tyrosine side chain and a neurotransmitter. Comparisons among four homologous receptors show variations in cation-pi binding energies that reflect the nature of the cationic center of the agonist.  相似文献   
3.
Evaporation residue cross sections have been measured with neutron-rich radioactive 132Sn beams on 64Ni in the vicinity of the Coulomb barrier. The average beam intensity was 2 x 10(4) particles per second and the smallest cross section measured was less than 5 mb. Large sub-barrier fusion enhancement was observed. Coupled-channel calculations taking into account inelastic excitation significantly underpredict the measured cross sections below the barrier. The presence of several neutron transfer channels with large positive Q values suggests that multinucleon transfer may play an important role in enhancing the fusion of 132Sn and 64Ni.  相似文献   
4.
The time scales for nuclear fission have been explored using both pre-and postfission neutrons and GDR gamma rays. Four systems were investigated: 133-MeV 16O + 176Yb and 208Pb and 104-MeV 4He + 188Os and 209Bi. Fission fragments were measured in coincidence with PPACs. The neutrons were detected using eight detectors from the DEMON array, while gamma rays were measured using the US BaF2 array. The pre-and postfission gamma rays were determined using moving source fits parallel and perpendicular to the fission fragment emission directions. The time scales for fission for the neutrons were determined using the neutron clock technique. The gamma-ray data were fitted using a statistical model calculation based on the code CASCADE. The results of the fits from both data types were used to extract nuclear friction coefficients, γ, and fission time scales. The γ values ranged from 7 to 20, while the fission times were (31–105)×10?21 s.  相似文献   
5.
A study of neutron time-of-flight spectra from the 4He(3He, n)6 reaction at E3He = 38.61 MeV, sets a one standard deviation upper limit of 7 μb/sr for the cross section to a possible narrow level near the 3He + 3He threshold.  相似文献   
6.
New experimental data has been obtained for the208Pb(α, α′) reaction induced by 160 MeV alpha particles, for inelastic scattering to forward angles. We use these data to investigate the applicability of the multistep scattering theory of Feshbach, Kerman, and Koonin for describing this reaction. The mechanism we study, following the work of Gadioli et al. [1], is of the incident alpha particle remaining intact throughout the scattering process, exciting nucleon particle-hole pairs through multistep process. We conclude that this mechanism, combined with compound nucleus decay at low emission energies, can account for much of the observed data. However, there are indications that other processes also contribute at energies above the compound nucleus emission regime, and we outline future theoretical analyses that are needed.  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号