首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   2篇
化学   24篇
物理学   5篇
  2021年   1篇
  2019年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   4篇
  2011年   4篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  1998年   1篇
  1966年   1篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
1.
Synthesis of a new monomer and polymer containing both ferrocene and hydrazone moieties are reported. The obtained materials were examined by various techniques including differential scanning calorimetry, UV, IR, NMR spectroscopy, and time of flight method. These materials may be of particular interest for the development of future electrophotographic photoreceptors as electron photoemission spectra of the layers showed ionization potentials of 5.35–5.41 eV. The hole drift mobility values in compositions of the designed structures with bisphenol Z polycarbonate exceeded 10−8 cm2/Vs at strong electric fields.  相似文献   
2.
Hydrazones containing 1-phenyl-1,2,3,4-tetrahydroquinoline units were synthesized starting from diphenylamine. These compounds were found to constitute novel hole transporting materials and were characterized by the time of flight method. The hole drift mobility in these compounds exceeds 10−6 cm2 V−1 s−1 at an electric field of 106 V cm−1.  相似文献   
3.
Star‐shaped charge‐transporting materials with a triphenylamine (TPA) core and various phenylethenyl side arm(s) were obtained in a one‐step synthetic procedure from commercially available and relatively inexpensive starting materials. Crystallinity, glass‐transition temperature, size of the π‐conjugated system, energy levels, and the way molecules pack in the solid state can be significantly influenced by variation of the structure of these side arm(s). An increase in the number of phenylethenyl side arms was found to hinder intramolecular motions of the TPA core, and thereby provide significant enhancement of the fluorescence quantum yield of the TPA derivatives in solution. On the other hand, a larger number of side arms facilitated exciton migration through the dense side‐arm network formed in the solid state and, thus, considerably reduces fluorescence efficiency by migration‐assisted nonradiative relaxation. This dense network enables charges to move more rapidly through the hole‐transport material layer, which results in very good charge drift mobility (μ up to 0.017 cm2 V ?1 s?1).  相似文献   
4.
A combined setup of quartz crystal microbalance and generalized ellipsometry can be used to comprehensively investigate complex functional coatings comprising stimuli-responsive polymer brushes and 3D nanostructures in a dynamic, noninvasive in situ measurement. While the quartz crystal microbalance detects the overall change in areal mass, for instance, during a swelling or adsorption process, the generalized ellipsometry data can be evaluated in terms of a layered model to distinguish between processes occurring within the intercolumnar space or on top of the anisotropic nanocolumns. Silicon films with anisotropic nanocolumnar morphology were prepared by the glancing angle deposition technique and further functionalized by grafting of poly-(acrylic acid) or poly-(N- isopropylacrylamide) chains. Investigations of the thermoresponsive swelling of the poly-(N-isopropylacrylamide) brush on the Si nanocolumns proved the successful preparation of a stimuli-responsive coating. Furthermore, the potential of these novel coatings in the field of biotechnology was explored by investigation of the adsorption of the model protein bovine serum albumin. Adsorption, retention, and desorption triggered by a change in the pH value is observed using poly-(acrylic acid) functionalized nanostructures, although generalized ellipsometry data revealed that this process occurs only on top of the nanostructures. Poly-(N-isopropylacrylamide) is found to render the nanostructures non-fouling properties.  相似文献   
5.
In this paper we report on the active stabilization of the carrier envelope phase (CEP) of a Yb:KGW chirped pulse amplifier laser system seeded by a Yb-doped solid-state Kerr-lens mode-locked oscillator. The regenerative amplifier delivers 180 fs CEP stable pulses of 30 μJ-1 mJ energy at a repetition rate tunable from 1 to 200 kHz. The bandwidth of the feedback loop was extended by a factor of 5 using a specially designed high-pass filter, which resulted in a dramatic decrease of CEP jitter below 0.45 rad after the amplifier.  相似文献   
6.
The synthesis of three enamine hole‐transporting materials (HTMs) based on Tröger's base scaffold are reported. These compounds are obtained in a three‐step facile synthesis from commercially available materials without the need of expensive catalysts, inert conditions or time‐consuming purification steps. The best performing material, HTM3, demonstrated 18.62 % PCE in PSCs, rivaling spiro‐OMeTAD in efficiency, and showing markedly superior long‐term stability in non‐encapsulated devices. In dopant‐free PSCs, HTM3 outperformed spiro‐OMeTAD by a factror of 1.6. The high glass‐transition temperature (Tg=176 °C) of HTM3 also suggests promising perspectives in device applications.  相似文献   
7.
Given alginate's contribution to Pseudomonas aeruginosa virulence, it has long been considered a promising target for interventional therapies, which have been performed by using the enzyme alginate lyase. In this work, instead of treating pre‐established mucoid biofilms, alginate lyase is immobilized onto a surface as a preventive measure against P. aeruginosa adhesion. A polydopamine dip‐coating strategy is employed for functionalization of polycarbonate surfaces. Enzyme immobilization is confirmed by surface characterization. Surfaces functionalized with alginate lyase exhibit anti‐adhesive properties, inhibiting the attachment of the mucoid strain. Moreover, surfaces modified with this enzyme also inhibit the adhesion of the tested non‐mucoid strain. Unexpectedly, treatment with heat‐inactivated enzyme also inhibits the attachment of mucoid and non‐mucoid P. aeruginosa strains. These findings suggest that the antibacterial performance of alginate lyase functional coatings is catalysis‐independent, highlighting the importance of further studies to better understand its mechanism of action against P. aeruginosa strains.

  相似文献   

8.
Summary. Synthesis of a new monomer and polymer containing both ferrocene and hydrazone moieties are reported. The obtained materials were examined by various techniques including differential scanning calorimetry, UV, IR, NMR spectroscopy, and time of flight method. These materials may be of particular interest for the development of future electrophotographic photoreceptors as electron photoemission spectra of the layers showed ionization potentials of 5.35–5.41 eV. The hole drift mobility values in compositions of the designed structures with bisphenol Z polycarbonate exceeded 10−8 cm2/Vs at strong electric fields.  相似文献   
9.
Mathematical model for evaluation of the multilayer heterogeneous biocatalytic system has been elaborated. The model consists of nonlinear system of partial differential equations with initial values and boundary conditions. An algorithm for computing the numerical solution of the mathematical model has been applied. Two cases: when product diffuses out of the biosensor and when the outer membrane is impermeable for product (product is trapped inside the biosensor) have been dealt with by adjusting boundary conditions in the mathematical model. Profiles of the impact of the substrate and product degradation rates on the biosensor response have been constructed in both cases. Value of the degradation impact has been analyzed as a function of the outer membrane thickness. The initial substrate concentration also affects influence of the degradation rates on the biosensor response. Analytical formulae, defining approximate values of relationships between the degradation rates and the outer membrane thickness or the initial substrate concentration, have been obtained. These formulae can be employed for monitoring of the biosensor response.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号