首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   1篇
化学   12篇
力学   4篇
数学   5篇
物理学   23篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2016年   4篇
  2015年   1篇
  2014年   1篇
  2013年   7篇
  2012年   5篇
  2011年   6篇
  2009年   1篇
  2008年   4篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1977年   1篇
  1939年   1篇
  1938年   2篇
排序方式: 共有44条查询结果,搜索用时 31 毫秒
1.
Electronic and magnetic properties of Ln1?xSrxCoO3 (Ln = Pr, Nd, Sm, Eu, and Gd) systems show that above a critical value of x, the d electrons become itinerant while the materials become ferromagnetic at low temperatures. The ferromagnetic component increases with increase in x and decrease in temperature. The Curie temperature increases with x and decreases with decrease in the size of the rare-earth ion. Incorporation of Ba2+ in LaCoO3 favors itinerant electron ferromagnetism relative to Sr2+ while Ca2+ is less favorable than Sr2+.  相似文献   
2.
Nanocrystalline La1−xBaxMnO3 (0.0≤x≤0.3) manganites have been prepared by a simple and instantaneous solution combustion method, which is a low temperature initiated synthetic route to obtain fine-grained powders with relatively high surface area. The phase purity and crystal structure of the combustion products are carried out by powder X-ray diffraction. The as-made nanopowders are in cubic phase. On calcination to 900 °C, barium doped manganites retain cubic phase, whereas barium free manganite transformed to rhombohedral phase. The scanning electron microscope (SEM) results revealed that the combustion-derived compounds are agglomerated with fine primary particles. The doped manganites have surface area in the range 24-44 m2/g. The surface area of the manganites increases with barium content, whereas it decreases on calcination. Both undoped and doped lanthanum manganites show two active IR vibrational modes at 400 and 600 cm−1. The low temperature resistivity measurements have been carried out by four-probe method down to 77 K. All the samples exhibit metal-insulator behaviour and metal-insulator transition temperature (TM-I) in the range 184-228 K and it is interesting to note that, as the barium content increases the TM-I shifts to lower temperature side. The maximum TM-I of 228 K is observed for La0.9Ba0.1MnO3 sample.  相似文献   
3.
Eu3+ (8 mol%) activated gadolinium oxide nanorods have been prepared by hydrothermal method without and with surfactant, cityl trimethyl ammonium bromide (CTAB). Powder X-ray diffraction (PXRD) studies reveal that the as-formed product is in hexagonal Gd(OH)3:Eu phase and subsequent heat treatment at 350 and 600 °C transforms the sample to monoclinic GdOOH:Eu and cubic Gd2O3:Eu phases, respectively. The structural data and refinement parameters for cubic Gd2O3:Eu nanorods were calculated by the Rietveld refinement. SEM and TEM micrographs show that as-obtained Gd(OH)3:Eu consists of uniform nanorods in high yield with uniform diameters of about 15 nm and lengths of about 50-150 nm. The temperature dependent morphological evolution of Gd2O3:Eu without and with CTAB surfactant was studied. FTIR studies reveal that CTAB surfactant plays an important role in converting cubic Gd2O3:Eu to hexagonal Gd(OH)3:Eu. The strong and intense Raman peak at 489 cm−1 has been assigned to Ag mode, which is attributed to the hexagonal phase of Gd2O3. The peak at ∼360 cm−1 has been assigned to the combination of Fg and Eg modes, which is mainly attributed to the cubic Gd2O3 phase. The shift in frequency and broadening of the Raman modes have been attributed to the decrease in crystallite dimension to the nanometer scale as a result of phonon confinement.  相似文献   
4.
Different phases of Eu3+ activated gadolinium oxide (Gd (OH)3, GdOOH and Gd2O3) nanorods have been prepared by the hydrothermal method with and without cityl trimethyl ammonium bromide (CTAB) surfactant. Cubic Gd2O3:Eu (8 mol%) red phosphor has been prepared by the dehydration of corresponding hydroxide Gd(OH)3:Eu after calcinations at 350 and 600 °C for 3 h, respectively. When Eu3+ ions were introduced into Gd(OH)3, lattice sites which replace the original Gd3+ ions, a strong red emission centered at 613 nm has been observed upon UV illumination, due to the intrinsic Eu3+ transition between 5D0 and 7F configurations. Thermoluminescence glow curves of Gd (OH)3: Eu and Gd2O3:Eu phosphors have been recorded by irradiating with gamma source (60CO) in the dose range 10-60 Gy at a heating rate of 6.7 °C sec−1. Well resolved glow peaks in the range 42-45, 67-76, 95-103 and 102-125 °C were observed. When γ-irradiation dose increased to 40 Gy, the glow peaks were reduced and with increase in γ-dose (50 and 60 Gy) results the shift in first two glow peak temperatures at about 20 °C and a new shouldered peak at 86 °C was observed. It is observed that there is a shift in glow peak temperatures and variation in intensity, which is mainly attributed to different phases of gadolinium oxide. The trapping parameters namely activation energy (E), order of kinetics (b) and frequency factor were calculated using peak shape and the results are discussed.  相似文献   
5.
FeSO4F‐based frameworks have recently emerged as attractive candidates for alkali insertion electrodes. Mainly owing to their rich crystal chemistry, they offer a variety of new host structures with different electrochemical performances and physical properties. In this paper we report the thermodynamic stability of two such K‐based “FeSO4F” host structures based on direct solution calorimetric measurements. KFeSO4F has been reported to crystallize in two different polymorphic modifications—monoclinic and orthorhombic. The obtained enthalpies of formation from binary components (KF plus FeSO4) are negative for both polymorphs, indicating that they are thermodynamically stable at room temperature, which is very promising for the future exploration of sulfate based cathode materials. Our measurements show that the low‐temperature monoclinic polymorph is enthalpically more stable than the orthorhombic phase by ≈10 kJ mol?1, which is consistent with the preferential formation of monoclinic KFeSO4F at low temperature. Furthermore, observed phase transformations and difficulties in the synthesis process can be explained based on the obtained calorimetric results. The KMnSO4F orthorhombic phase is more stable than both polymorphs of KFeSO4F.  相似文献   
6.
Nanoparticles of Y2O3:Dy3+ were prepared by the solution combustion method. The X-ray diffraction pattern of the 900°C annealed sample shows a cubic structure and the average crystallite size was found to be 31.49?nm. The field emission scanning electron microscopy image of the 900°C annealed sample shows well-separated spherical shape particles and the average particle size is found to be in a range 40?nm. Pellets of Y2O3:Dy3+ were irradiated with 100?MeV swift Si8+ ions for the fluence range of 3?×?1011_3?×?1013 ions cm?2. Pristine Y2O3:Dy3+ shows seven Raman modes with peaks at 129, 160, 330, 376, 434, 467 and 590?cm?1. The intensity of these modes decreases with an increase in ion fluence. A well-resolved thermoluminescence glow with peaks at ~414?K (Tm1) and ~614?K (Tm2) were observed in Si8+ ion-irradiated samples. It is found that glow peak intensity at 414?K increases with an increase in the dopant concentration up to 0.6?mol% and then decreases with an increase in dopant concentration. The high-temperature glow peak (614?K) intensity linearly increases with an increase in ion fluence. The broad TL glow curves were deconvoluted using the glow curve deconvoluted method and kinetic parameters were calculated using the general order kinetic equation.  相似文献   
7.
Low temperature solution combustion method was employed to synthesize Dy2O3 nanophosphors using two different fuels (sugar and oxalyl dihydrazine (ODH)). Powder X-ray diffraction confirm pure cubic phase and the estimated particle size from Scherrer's method in sugar and ODH fuel was found to be 26 and 78 nm, respectively, and are in close agreement with those obtained using TEM and W–H plot analysis. SEM micrographs reveal porous, irregular shaped particles with large agglomeration in both the fuels. An optical band gap of 5.24 eV and 5.46 eV was observed for Dy2O3 for sugar and ODH fuels, respectively. The blueshift observed in sugar fuel is attributed to the particles size effect. Thermoluminescence (TL) response of cubic Dy2O3 nanophosphors prepared by both fuels was examined using gamma and UV radiations. The thermoluminescence of sugar used samples shows a single glow peak at 377 °C for 1–4 kGy gamma irradiations. When dose is increased to 5 kGy, two more shouldered peaks were observed at 245 and 310 °C. However, in TL of ODH used samples, a single glow peak at 376 °C was observed. It is observed that TL intensity is found to be more in sugar used samples. In UV irradiated samples a single glow peak at 365 °C was recorded in both the fuels with a little variation in TL intensity. The trapping parameters were estimated by different methods and the results are discussed.  相似文献   
8.
Ru-catalysed oxidative coupling of allylsilanes and allyl esters with activated olefins has been developed via isomerization followed by C(allyl)–H activation providing efficient access to stereodefined 1,3-dienes in excellent yields. Mild reaction conditions, less expensive catalysts, and excellent regio- and diastereoselectivity ensure universality of the reaction. In addition, the unique power of this reaction was illustrated by performing the Diels–Alder reaction, and enantioselective synthesis of highly functionalized cyclohexenone and piperidine and finally synthetic utility was further demonstrated by the efficient synthesis of norpyrenophorin, an antifungal agent.

Ru-catalysed oxidative coupling of allylsilanes and allyl esters with activated olefins has been developed via isomerization followed by C(allyl)–H activation providing efficient access to stereodefined 1,3-dienes in excellent yields.

1,3-Dienes not only are widespread structural motifs in biologically pertinent molecules but also feature as a foundation for a broad range of chemical transformations.1–14 Indeed, these conjugated dienes serve as substrates in many fundamental synthetic methodologies such as cycloaddition, metathesis, ene reactions, oxidoreduction, or reductive aldolization. It is well-understood that the geometry of olefins often influences the stereochemical outcome and the reactivity of reactions involving 1,3-dienes.15 Hence, a plethora of synthetic methods have been developed for the stereoselective construction of substituted 1,3-dienes.16–24 The past decade has witnessed a huge advancement in the field of metal-catalyzed C–H activation/functionalization.25–27 Although, a significant amount of work in the field of C(alkyl)–H and C(aryl)–H activation has been reported; C(alkenyl)–H activation has not been explored conspicuously, probably due to the complications caused by competitive reactivity of the alkene moiety, which can make chemoselectivity a significant challenge. Over the past few years, several different palladium-based protocols have been developed for C(alkenyl)–H functionalization, but the reactions are generally limited to employing conjugated alkenes, such as styrenes,28–31 acrylates/acrylamides,32–36 enamides,37 and enol esters/ethers.38,39 To date, only a few reports have appeared in the literature for expanding this reactivity towards non-conjugated olefins, which can be exemplified by camphene dimerization,40 and carboxylate-directed C(alkenyl)–H alkenylation of 1,4-cyclohexadienes.41 In 2009, Trost et al. reported a ruthenium-catalyzed stereoselective alkene–alkyne coupling method for the synthesis of 1,3-dienes.42 The same group also reported alkene–alkyne coupling for the stereoselective synthesis of trisubstituted ene carbamates.43 A palladium catalyzed chelation control method for the synthesis of dienes via alkenyl sp2 C–H bond functionalization was described by Loh et al.44 Recently, Engle and coworkers reported an elegant approach for synthesis of highly substituted 1,3-dienes from two different alkenes using an 8-aminoquinoline directed, palladium(ii)-mediated C(alkenyl)–H activation strategy.45 Allyl and vinyl silanes are known as indispensable nucleophiles in synthetic chemistry.46 Alder ene reactions of allyl silanes with alkynes are reported for the synthesis of 1,4-dienes.47 Innumerable methods are known for the preparation of both allyl and vinyl silanes48–52 but limitations are associated with many of the current protocols, which impedes the synthesis of unsaturated organosilanes in an efficient manner. Silicon-functionalized building blocks are used as coupling partners in the Hiyama reaction53 and are easily converted into iodo-functionalized derivatives (precursor for the Suzuki cross-coupling reaction), but there is little attention given for the synthesis of functionalized vinyl silanes. Herein, we report a general approach for the stereoselective synthesis of trisubstituted 1,3-dienes by the Ru-catalyzed C(sp3)–H functionalization reaction of allylsilanes (Scheme 1).Open in a separate windowScheme 1Highly stereoselective construction of 1,3-dienes.In 1993, Trost and coworkers reported an elegant method for highly chemoselective ruthenium-catalyzed redox isomerization of allyl alcohols without affecting the primary and secondary alcohols and isolated double bonds.54,55 Inspired by the potential of ruthenium for such isomerization of double bonds in allyl alcohols, we sought to identify a ruthenium-based catalytic system that can promote isomerization of olefins in allylsilanes followed by in situ oxidative coupling with an activated olefin to form substituted 1,3-dienes. We initiated our studies by choosing trimethylallylsilane 1a and acrylate 2a by using a commercially available [RuCl2(p-cymene)]2 catalyst in the presence of AgSbF6 as an additive and co-oxidant Cu(OAc)2 in 1,2-DCE at 100 °C. Interestingly, it resulted into direct formation of (2E,4Z)-1,3-diene 3aa as a single isomer in 55% yield. It is likely that this reaction occurs by C(allyl)–H activation of the π-allyl ruthenium complex followed by oxidative coupling with the acrylate and leaving the silyl group intact (Table 1). π-Allyl ruthenium complex formation may be highly favorable due to the α-silyl effect which stabilizes the carbanion forming in situ in the reaction.56 Next, the regioselective C–H insertion of vinyl silanes could be controlled by stabilization of the carbon–metal (C–M) bond in the α-position to silicon. This stability arises due to the overlapping of the filled carbon–metal orbital with the d orbitals on silicon or the antibonding orbitals of the methyl–silicon (Me–Si) bond.57 The stereochemistry of the diene was established by 1D and 2D spectroscopic analysis of the compound 3aa. To quantify the C–H activation mediated coupling efficiency, an extensive optimization study was conducted (allylsilanes followed by in situ oxidative coupling with an activated olefin to form substituted 1,3-dienes). The change of solvents from 1,2-DCE to t-AmOH, DMF, dioxane, THF or MeCN did not give any satisfactory result, rather a very sluggish reaction rate or decomposition of starting materials was observed in each case (entry 2–6).Optimization of reaction conditionsa
EntryAdditive (20 mol%)Oxidant (2 equiv.)SolventYieldb (%)
1AgSbF6Cu(OAc)2DCE55
2AgSbF6Cu(OAc)2t-AmOH10
3AgSbF6Cu(OAc)2DMF0
4AgSbF6Cu(OAc)2Dioxane8
5AgSbF6Cu(OAc)2THF21
6AgSbF6Cu(OAc)2MeCN0
7cAgSbF6Cu(OAc)2DCE35
8dAgSbF6Cu(OAc)2DCE82
9eAgSbF6Cu(OAc)2DCE45
10dAg2CO3Cu(OAc)2DCE0
11dAgOAcCu(OAc)2DCE20
12dAgSbF6DCE0
Open in a separate windowaReaction conditions: 1a (0.24 mmol), 2a (0.2 mmol), [Ru(p-cymene)Cl2]2 (5 mol%), additive (20 mol%) and oxidant (2 equiv.) at 100 °C in a specific solvent (2.0 mL), under argon, for 16 h.bIsolated yields are of product 3aa.cThe reaction was performed at 120 °C.dThe reaction was performed at 80 °C.eThe reaction was performed at 60 °C. t-AmOH – tertiary amyl alcohol, DMF – N,N-dimethylformamide, DCE – 1,2-dichloroethane.The increase of temperature from 100 °C to 120 °C resulted in the formation of diene in lower yield (entry 7). To our delight, it was found that a substantial enhancement in the yield (82%) was observed when the reaction was performed at 80 °C (entry 8). In particular, this was found to be the best reaction condition since further lowering of the temperature led to noteworthy attenuation of the reaction rate and yield (entry 9). Interestingly, the reaction was not efficient, when AgSbF6 was replaced with other additives, such as Ag2CO3 and AgOAc. It was also observed that, co-oxidant Cu(OAc)2 is necessary for the success of this reaction (entry 12).With these optimized conditions in hand, various allyl sources and acrylates have been tested (Table 2). It was found that a variety of acrylates 2 bearing alkyl and sterically crowded cyclic substituents successfully underwent the coupling reaction with allyl silane 1a to afford corresponding silyl substituted (2E,4Z)-1,3-dienes in good yields (3aa–3af). Similarly, dimethyl benzylallylsilane 1b reacted smoothly with acrylates such as methyl, isobutyl and n-butyl to generate desired dienes 3ba, 3bb and 3bc in 83%, 85% and 82% yield respectively. Interestingly, sterically crowded, tert-butyldimethyl allylsilane 1c showed its reactivity towards the coupling reaction with n-butyl acrylate to provide required diene 3cb in 80% yield. It is worth mentioning that allylsilanes 1a and 1b also exhibited their coupling reactivity with phenyl vinyl sulfone and successfully generated corresponding 1,3-dienes 3ag and 3bg in 78% and 76% yield respectively. When tert-butyldiphenylallylsilane 1d was subjected to the coupling reaction with methyl acrylate 2a, end–end coupling product 3da was isolated in 68% yield. This may be attributed to the steric crowding offered by bulky groups on silicon which prevents allyl to vinyl isomerization.Substrate scope for oxidative coupling of allylsilanes with acrylates and vinyl sulfonesa
Open in a separate windowaReaction conditions: 1 (0.24 mmol), 2 (0.2 mmol), [Ru(p-cymene)Cl2]2 (5 mol%), AgSbF6 (20 mol%) and Cu(OAc)2·H2O (2 equiv.) at 80 °C in 1,2-dichloroethane (2.0 mL), under argon, 16 h.bIsolated yields are of product 3. TMS – trimethylsilyl, TBDMS – tertiarybutyldimethyl silyl.To extend the substrate scope of the reaction, we next examined the scope of allylesters by employing 2a as the coupling partner. First, we carried out the coupling reaction between allyl ester derivative 4a and methyl acrylate 2a under standard conditions. To our delight, a single isomer of acetate substituted (2E,4Z)-1,3-diene 5aa was isolated with a good yield (75%) (Table 3). This result may be extremely unusual due to the weak thermodynamic driving force for the double bond migration of allyl esters and tendency of many metal catalysts to insert themselves into the C(allyl)–O bond to form a stable carboxylate complex.58 Even for unsubstituted allyl esters very few reports of double bond migrations exist.59–62 It is worth mentioning that unlike the Tsuji–Trost reaction,63–65 the C(allyl)–O bond doesn''t break to form the π-allyl palladium complex as an electrophile, instead it forms a nucleophilic π-allylruthenium complex (umpolung reactivity) keeping the acetate group intact, which further reacts with an electrophile. The stereochemistry of the diene was established by 1D and 2D spectroscopic analysis of the compound 5ga and also by comparison of spectroscopic data with those of an authentic compound.66 Next we turned our attention to expand the scope of the coupling reaction between various acrylates and allyl esters. It was found that a variety of allyl esters bearing alkyl substituents on the carbonyl carbon could provide moderate to good yields of the corresponding stereodefined (2E,4Z)-1,3,4-trisubstituted 1,3-dienes successfully. As can be seen from Table 2, alkyl substituents (4b–4d) had little influence on the yields (65–75%). Gratifyingly, we noticed that the presence of a bulky substituent in 4 also showed its viability towards the coupling reaction, albeit with modest yields (5ea & 5fa). Also, various acrylate derivatives reacted smoothly to generate the 1,3-dienes in excellent yield. A simple allyl acetate 4g reacted with a series of different acrylates 2 to afford the desired products in good yields.Substrate scope for oxidative coupling of various allyl esters with different acrylates and vinyl sulfonesa
Open in a separate windowaReaction conditions: 4 (0.24 mmol), 2 (0.2 mmol), [Ru(p-cymene)Cl2]2 (5 mol%), AgSbF6 (20 mol%) and Cu(OAc)2·H2O (2 equiv.) at 80 °C in 1,2-dichloroethane (2.0 mL), under argon, 16 h.bIsolated yields are of product 5.Several acrylates such as methyl-, ethyl-, n-butyl-, isobutyl-, n-heptyl-, cyclohexylmethyl-, benzyl-, etc. were tested and good to very good yields of the products were obtained. Also, gram scale synthesis of 5gh (1.35 g) by the reaction of acetate 4g with 2h gave identical results in terms of yield (69%) and diastereoselectivity, indicating the robustness and practicality of this method. Markedly, a C2-symmetric diacrylate (2e) also reacted with allyl acetate to form a mono-coupled product 5ge, though in a somewhat lower yield. In contrast to the allyl esters, the coupling was not affected by the steric bulk of the acrylate substituents as depicted in Table 3. Even the borneol derivative 2j and menthol derivative 2l, which can offer considerable steric hindrance, were found to be equally effective in the formation of 5gj and 5gl in very good yields. A somewhat reduced yield of the product 5gm was observed while using phenyl acrylate (2m) perhaps due to competitive reactive sites. Interestingly, the versatility of this methodology was not restricted only to acrylates, since phenyl vinyl sulfone was also found to be equally efficient for oxidative C–H functionalization with different allyl esters and a successful C–C coupling reaction was observed in each case with moderate yield and excellent diastereoselectivity.Interestingly treatment of allylsilanes under standard reaction conditions in the absence of an acrylate coupling partner led to isomerization of various allylsilanes to afford corresponding vinylsilanes 6b–6e in excellent yields (Scheme 2a). When allylsilane 1d was subjected to isomerization in the presence of CD3CO2D, a significant amount of deuterium scrambling at the α-position (>20%) as well as at the methyl group (>45%) was observed in corresponding vinylsilane, indicating that the isomerization step is reversible and the rate determining step (Scheme 2b). It is also observed that when vinylsilane 6b was made to react with methyl acrylate 2a under standard conditions, it successfully underwent highly regioselective C–H activation and afforded coupling product 3b′a in 80% yield (Scheme 2c). This result confirms that the coupling reaction proceeds via vinyl silane intermediate 6.Open in a separate windowScheme 2Isomerization of allylsilanes and deuterium study.It is delightful to mention that diene 3aa successfully underwent the Diels–Alder reaction with N-phenyl maleimide 7 in toluene at 80 °C, to afford single isomer 8 in 70% yield which ensures the pragmatism of the method (Scheme 3). The unique power of this ruthenium-catalyzed C–H functionalization strategy is illustrated by the late-stage diversification of the diene 5gh, to a very reactive Michael acceptor 9 (conventional route for preparation of 9 requires in situ oxidation of α-hydroxyketones using 10 equiv. MnO2 followed by the Wittig reaction, which generates a superstoichiometric amount of phosphine waste)67,68via selective hydrolysis of the acetate group, which is useful in the synthesis of ester-thiol 10,69 cyclohexenone 11 and polysubstituted piperidine 12 (ref. 70) (Scheme 4). Thus the Micheal acceptor 9 on reaction with thiophenol generated compound 10 in excellent yield and high regioselectivity. On the other hand compound 9 on reaction with heptanal in the presence of Hayashi–Jørgensen''s catalyst afforded the Michael adduct 13 in 72% yield and excellent diastereoselectivity. Keto-aldehyde 13 was converted to highly substituted cyclohexenone 11 and piperidine 12.Open in a separate windowScheme 3Application to the Diels–Alder reaction.Open in a separate windowScheme 4Application to the organocatalytic Michael addition reaction.The potential of this Ru-catalysed reaction was further demonstrated by norpyrenophorin synthesis.71–74 Norpyrenophorin 14 is a synthetic 16-membered lactone which has essentially the same physiological activity as the natural fungicide pyrenophorin 15 and the antibiotic vermiculin 16.73 A brief retrosynthetic analysis revealed that the dimeric macrocycle 14 could be dissected into monomer 17 which could be easily accessed from oxidative coupling of 2a with 18 using the C–H activation reaction (Scheme 5). Ruthenium catalysed oxidative coupling of symmetric allylester 18 with 2a generated the key intermediate 19 in 32% yield. Selective hydrolysis of acetyl enolate 19 was accomplished by the treatment with K2CO3 in methanol to provide 20 in 70% yield. In accordance with some previously reported studies, the active ketone functionality of 20 was protected as ketal by treatment with ethylene glycol in refluxing benzene to afford substrate 21. Selective hydrolysis of acetate was achieved using Bu2SnO to generate alcohol 22 and finally, aluminium–selenium adduct mediated72 ring closing lactonization followed by deketalization ensured the completion of synthesis of 14 in 23% yield (two steps) (Scheme 6). A similar type of dimerization reaction could be envisioned to synthesize the natural products pyrenophorin 15 and vermiculin 16.Open in a separate windowScheme 5Retrosynthetic analysis of norpyrenophorin.Open in a separate windowScheme 6Synthesis of norpyrenophorin.Based on the above result and previous report, a plausible mechanism for this oxidative coupling reaction is depicted in Scheme 7. The catalytic cycle is initiated by substrate 4g coordination to in situ generated reactive cationic ruthenium complex [Ru(OAc)L]+ A, followed by weakly coordinating ester group directed C–H activation of allyl ester to give a π-allyl ruthenium intermediate C, which again would undergo isomerization to produce intermediate D. In the case of allyl silanes, an α-silyl effect might play an important role for the isomerisation of allylsilanes to vinylsilanes via the silylated allyl anion.56 Regioselective C–H activation of in situ generated vinyl acetate would give intermediate E. Induction of stability to the carbon–metal bond by the silyl group favours regioselective C–H insertion in the case of vinyl silanes.57 Coordination followed by 1,4-addition of vinyl ruthenium species to the activated olefins (acrylate, 2a) would generate intermediate G, which would further undergo β-hydride elimination to provide a single isomer of 1,3-diene H and intermediate I could undergo reductive elimination followed by reoxidation of in situ forming Ru(0) species in the presence of Cu(OAc)2 to regenerate the reactive ruthenium(ii) complex A for the next catalytic cycle.Open in a separate windowScheme 7Plausible reaction mechanism.  相似文献   
9.
The bidentate ligand diformylhydrazine (OHC-HN-NH-CHO), DFH, combines with iron(II) and iron(III) in alkaline media in the pH range 7.3-9.3 to form an intensely colored red-purple iron(III) complex with an absorption maximum at 470 nm. Beer's law is obeyed for iron concentrations from 0.25 to 13 microg mL(-1). The molar absorptivity was in the range 0.3258x10(4)-0.3351x10(4) L mol(-1) cm(-1) and Sandell's sensitivity was found to be 0.0168 microg cm(-2). The method has been applied to the determination of iron in industrial waste, ground water, and pharmaceutical samples.  相似文献   
10.
Pellets of nanocrystalline aluminum oxide synthesized by a combustion technique are irradiated with 120 MeV Au9+ ions for fluence in the range 5×1011-1×1013 ions cm−2. Two photoluminescence (PL) emissions, a prominent one with peak at ∼525 nm and a shoulder at ∼465 nm are observed in heat treated and Au9+ ion irradiated aluminum oxide. The 525 nm emission is attributed to F22+-centers. The PL intensity at 525 nm is found to increase with increase in ion fluence up to 1×1012 ions cm−2 and decreases beyond this fluence. Thermoluminescence (TL) of heat-treated and swift heavy ion (SHI) irradiated aluminum oxide gives a strong and broad TL glow with peak at ∼610 K along with a weak shoulder at 500 K. The TL intensity is found to increase with Au9+ ion fluence up to 1×1013 ions cm−2 and decreases beyond this fluence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号