首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   2篇
化学   40篇
晶体学   1篇
数学   4篇
物理学   36篇
  2022年   1篇
  2019年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   5篇
  2010年   2篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2002年   1篇
  2001年   2篇
  1995年   1篇
  1994年   3篇
  1992年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1976年   2篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1966年   1篇
  1964年   1篇
  1962年   3篇
  1961年   2篇
  1941年   1篇
  1932年   1篇
  1929年   3篇
排序方式: 共有81条查询结果,搜索用时 31 毫秒
1.
2.
3.
Biodegradable polyurethanes are an interesting alternative to many applications that involve plastics since they can minimize environmental problems caused by the low rates of natural degradation of synthetic polymers. In addition, since waterborne polyurethanes are based on aqueous dispersions, they restrict the use of organic solvents during processing and application of the polymer, thus contributing furthermore to reduce environmental damage. In this work, aqueous anionic polyurethane dispersions (PUD) with tailorable susceptibility for hydrolysis were synthesized by progressively replacing polypropylene glycol (PPG) with a biodegradable polycaprolactone diol (PCL) as soft segments. The hard segments were formed by extending isophorone diisocyanate (IPDI) with hydrazine (HZ). Dimethylol propionic acid (DMPA) was used as ionic center and triethyl amine (TEA) as neutralizer. The degree of phase separation was evaluated mainly by infrared spectroscopy (FTIR) and small angle X-ray scattering (SAXS). The results indicated that phase separation between hard and soft segments of poly(ester-urethane) is more significant than that of poly(ether-urethane). Data obtained from SAXS experiments indicated that phase separation within soft domains can also be present in samples containing both polyester and polyether soft segments. Hydrolytic degradation of the polymers in buffer solution of pH 7.4 and alkaline solution was performed as an initial test. The results showed that the fraction of polyester soft segments in the polyurethanes can be used to tailor the susceptibility of the materials to hydrolytic attack. Polyurethanes having higher contents of polyester were more promptly hydrolytically degraded than polyurethanes containing only polyether segments.  相似文献   
4.
The conjugate addition of benzylic phenylsulfonyl carbanions (2a'-d') to enoates derived from d-(+)-mannitol (E- or Z-1a-c) was studied using THF and THF/HMPA as solvent. Under kinetic conditions (-78 degrees C), enoate E-1a,b led to a mixture of syn-(R,S) and anti-(S,S) adducts (55/45), and syn-(R,S) adducts were the main product obtained ( approximately 90/10) from enoate Z-1a. Under thermodynamic conditions (-78 degrees C to room temperature) syn-(R,S) adducts were also preferentially formed ( approximately 90/10), despite the geometry at the double bond in the acceptor. Enoate 1c (E/Z = 57/43), bearing an additional benzyl group at the alpha-position, also reacted with carbanions 2'a,b, under thermodynamic conditions, leading to syn-adducts in excellent de (control at the three newly generated stereogenic centers). The adducts were quantitatively transformed into the corresponding beta-gamma-disubstituted gamma-butyrolactones and alpha,beta,gamma-trisubstituted gamma-butyrolactones. (1)H NMR studies (NOE and J-coupling) of these lactones allowed us to determine their configuration at the newly generated chiral centers. The reduction of the C-S bond in adducts syn-(R,S) with Na/Hg, followed by treatment of the resulting products in aqueous acid media, led to enantioenriched beta-benzyl-gamma-hydroxymethyl-gamma-butyrolactones. The conformational equilibrium of enoates E- and Z-1b was evaluated by theoretical calculations (ab initio, MP2/6-31G), and a mechanistic rationale was proposed to explain the observed stereoselectivities.  相似文献   
5.
The perturbation felt by181Hf probes in a181HfTa lattice loaded with 30 at% hydrogen was observed by PAC as a function of temperature. Three different interactions were identified: 1) ΝQ1=433 (6) MHz, η=0.45 2) ΝQ2=142 (9) MHz, η=0.9, and 3) ΝQ?0, σ=4–14 Μ?1 which are attributed to the Β?, ε? and α-phase in TaH system, respectively.  相似文献   
6.
Ruthenium(III) reacts with 2,2′,2″-terpyridine in aqueous solution at pH 3.0–4.5, when heated at 85 °C for 2 min, giving a green cationic complex with an absorbance maximum at 690 nm. The color is stable for at least 25 h. The system conforms to Beer's law. The optimal range for measurement (1.00-cm optical path) is 2–10 p.p.m. Ru; the molar absorptivity is 8.3 ·103. Ruthenium(II) reacts with terpyridine at pH 5.5 to develop an amber cationic complex (absorption maximum at 475 nm) on heating at 95° C for 45 min. The color is apparently stable indefinitely. The system conforms to Beer's law; the optimal range is 1–5 p.p.m. Ru; the molar absorptivity is 1.45·104 l mol?1 cm?1. Common anions do not interfere; separation as RuO4 is necessary when iron and a few other transition cations are present. The green complex, a strong oxidant, is converted to the ruthenium(II) complex by oxidation of water, slowly at room temperature, or more quickly by longer heating and/or higher temperature, and by increase of pH. The Ru(II) complex can be converted to the Ru(III) complex by strong oxidants such as Ce(IV). In the amber complex, the reaction ratio is 1 Ru: 2 terpyridine, in which the ligand is tridentate, whereas in the green complex the reaction ratio is 1 Ru : 3 terpyridine, the latter acting only as a bidentate ligand. Short gentle warming of a mixture of ruthenium(III) and terpyridine first produces a transient unidentified blue-colored species (absorbance at 790 nm).  相似文献   
7.
Polyurethane waterborne synthesis was performed using a two-step method, commonly referred to as a prepolymer method. Nanocomposites based on waterborne polyurethane and cellulose nanocrystals were prepared by the prepolymer method by altering the mode and step in which the nanofillers were incorporated during the polyurethane formation. The morphology, structural, thermal, and mechanical properties of the resulting nanocomposite films were evaluated by Fourier transform infrared spectroscopy (FTIR), small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), and tensile tests. FTIR results indicated that the degree of interaction between the nanofillers and the WPU through hydrogen bonds could be controlled by the method of cellulose nanocrystal incorporation. Data obtained from SAXS experiments showed that the cellulose nanocrystals as well as the step of the reaction in which they are added influenced the morphology of the polyurethane. The reinforcing effect of CNCs on the nanocomposites depends on their morphology.  相似文献   
8.
The synthesis of a molecular brush was accomplished by combining step‐growth polymerization and reversible addition fragmentation chain transfer (RAFT) polymerization in a “grafting from” methodology. A symmetrical N‐alkyl urea peptoid sixmer containing alkyne functional groups was prepared using a divergent strategy, and the structure of the product was confirmed using NMR spectroscopy and mass spectrometry. A step‐growth process was used to prepare a linear poly(N‐alkyl urea peptoid) by reacting the diamine‐functionalized N‐alkyl urea peptoid sixmer with a diisocyanate. RAFT chain transfer agents were coupled to the poly(N‐alkyl urea peptoid) backbone through a copper‐catalyzed azide/alkyne cycloaddition reaction. The afforded macro‐RAFT agent was used to sequentially polymerize styrene and tert‐butyl acrylate block copolymer arms from the poly(N‐alkyl urea peptoid) backbone. The tert‐butyl groups were removed using dilute trifluoroacetic acid affording hydrophilic polyacrylic acid segments. The molecular brushes were observed to generate micelles in aqueous solution. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号