首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
物理学   18篇
  2013年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  2000年   4篇
  1999年   1篇
  1996年   3篇
  1995年   2篇
  1992年   1篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
2.
3.
The excitation and the relaxation of the plasma waves and ion acoustic waves (IAW), respectively, driven by stimulated Raman (SRS) and Brillouin (SBS) backscatterings have been experimentally investigated with short-pulse lasers. The spectra have been obtained with a 0.3 ps time resolution. It is shown that SRS develops before SBS and suddenly decays around the peak of the pump, as the IAW reaches saturation. On this short time scale, electron kinetic effects play a major role for SRS saturation, contrary to ion dynamics. These results are supported by particle-in-cell simulations.  相似文献   
4.
5.
Spatiotemporal smoothing of large-scale laser intensity fluctuations is observed for a laser beam focused into underdense helium plasmas. This smoothing is found to be severely enhanced when focusing the laser beam into a helium gas jet. In contrast to other experiments with preformed plasmas, the average and the peak laser intensities are well below the threshold for ponderomotive self-focusing. The coherence characteristics of the transmitted light are measured for various electron densities, and the smoothing effect is explained by multiple scattering of laser light on self-induced density perturbations.  相似文献   
6.
We study the propagation of fast electrons in a gas at different densities. A large relativistic electron current is produced by focusing a short-pulse ultrahigh-intensity laser on a metallic target. It then propagates in a gas jet placed behind the foil. Shadowgraphy in the gas shows an electron cloud moving at sub-relativistic average velocities. The experiment shows (i) the essential role of the density of background material for allowing propagation of fast electrons, (ii) the importance of the ionization phase which produces free electrons available for the return current, and (iii) the effect of electrostatic fields on fast-electron propagation.  相似文献   
7.
Thomson self-scattering measurements are performed in a preionized helium gas jet plasma at different locations along the laser propagation direction. A systematic and important variation of the intensity ratio between the blue and the red ion spectral components is observed, depending on whether the location of the probed region is in front of or behind the focal plane. A simple theoretical calculation of Thomson scattering shows that this behavior can be qualitatively understood in terms of a deformation of the electron distribution function due to the return current correlated with the classical thermal heat flux.  相似文献   
8.
We present a summary of the beatwave particle acceleration program developed at Ecole Polytechnique. In dedicated experiments, plasma formation, plasma wave generation and saturation, and particle acceleration were successively studied and understood in detail. A maximum energy gain of 1.3 MeV was obtained, which is compatible with an accelerating gradient of 0.7 GV/m  相似文献   
9.
We report on experimental results regarding the propagation of ultraintense laser pulses in a preformed plasma channel. In this experiment, the long (4-mm) fully ionized plasma channel created by the amplified spontaneous emission (ASE) was measured by interferometry before and after the propagation of the short laser pulse. Forward spectra show a cascade of Raman satellites, which merge with one another when the laser power was increased up to critical power for relativistic self-focusing Pc. The number of filaments measured by interferometry increases when the laser power increases. High conversion efficiency (≈10%) of second harmonic generation was observed in the interaction  相似文献   
10.
We have searched for stimulated photon scattering in vacuum at a center of mass photon energy of 0.8 eV. The QED contribution to this process is equivalent to four wave mixing in vacuum. No evidence for scattering was observed. The corresponding upper limit of the cross-section is . Received 29 September 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号