首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   0篇
晶体学   15篇
数学   2篇
物理学   25篇
  2017年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
1.
2.
3.
A.F. Qasrawi  N.M. Gasanly 《哲学杂志》2013,93(22):2899-2906
The extrinsic electronic parameters of Tl2InGaSe4 layered crystals were investigated through measurement of the temperature-dependent dark conductivity, space-charge-limited currents and photoconductivity. Analysis of the dark conductivity reveals the existence of two extrinsic energy levels at 0.40 and 0.51 eV below the conduction band edge, which are dominant above and below 260 K, respectively. Current–voltage characteristics show that the one at 0.51 eV is a trapping energy level with a concentration of (4.8–7.7) × 1010 cm?3. Photoconductivity measurements reveal the existence of another energy level located at 0.16 eV. In the studied temperature range, the photocurrent increases with increasing temperature. The dependence of the photoconductivity on the incident light intensity exhibits a linear recombination character near room temperature and a supralinear character as the temperature decreases. The change in recombination mechanism is attributed to an exchange in the behavior of sensitizing and recombination centres.  相似文献   
4.
TlInS2 single crystals are studied through the conductivity and Hall effect measurements in the temperature regions of 100‐400 and 170‐400 K, respectively. An anomalous behavior of Hall voltage, which changes sign below 315 K, is interpreted through the existence of deep donor impurity levels that behave as acceptor levels when are empty. The hole and electron mobility are limited by the hole‐ and electron‐phonon short range interactions scattering above and below 315 K, respectively. An energy level of 35 meV and a set of donor energy levels located at 360, 280, 220 and 170/152 meV are determined from the temperature dependencies of the carrier concentration and conductivity. A hole, electron, hole‐electron pair effective masses of 0.24 mo, 0.14 mo and 0.09 mo and hole‐ and electron‐phonon coupling constants of 0.50 and 0.64, respectively, are obtained from the Hall effect measurements. The theoretical fit of the Hall coefficient reveals a hole to electron mobility ratio of 0.8. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
5.
The temperature effects on the capacitance–voltage characteristics as well as the room temperature capacitance–frequency characteristics of TlGaTe2 crystals are investigated. A very wide range of linearly varying tunable capacitance from 6.0 μF to 60 pF was recorded. The capacitance–voltage characteristics, being recorded in the temperature range of 290–380 K, revealed a linear increase in the build in voltage associated with exponential decrease in the density of non-compensated ionized carriers with increasing temperature. The high temperature (up to 380 K) biasing ability, the linear tunability and the high dielectric constant values (∼103) make the TlGaTe2 crystals applicable in microelectronic components.  相似文献   
6.
GaSe thin films are obtained by evaporating GaSe crystals onto ultrasonically cleaned glass substrates kept at room temperature under a pressure of ∼10–5 Torr. The X‐ray analysis revealed that these films are of amorphous nature. The reflectance and transmittance of the films are measured in the incident photon energy range of 1.1–3.0 eV. The absorption coefficient spectral analysis revealed the existence of long and wide band tails of the localized states in the low absorption region. The band tails width is calculated to be 0.42 eV. The analysis of the absorption coefficient in the high absorption region revealed an indirect forbidden band gap of 1.93 eV. The transmittance analysis in the incidence photon wavelength range of 500–1100 nm allowed the determination of refractive index as function of wave length. The refractive index–wavelength variation leads to the determination of dispersion and oscillator energies as 31.23 and 3.90 eV, respectively. The static refractive index and static dielectric constant were also calculated as a result of the later data and found to be 9.0 and 3.0, respectively. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
7.
8.
Setup operations are significant in some production environments. It is mandatory that their production plans consider some features, as setup state conservation across periods through setup carryover and crossover. The modelling of setup crossover allows more flexible decisions and is essential for problems with long setup times. This paper proposes two models for the capacitated lot-sizing problem with backlogging and setup carryover and crossover. The first is in line with other models from the literature, whereas the second considers a disaggregated setup variable, which tracks the starting and completion times of the setup operation. This innovative approach permits a more compact formulation. Computational results show that the proposed models have outperformed other state-of-the-art formulation.  相似文献   
9.
We present a convergence analysis of the spectral Lagrange-Galerkinmethod for mixed periodic/non-periodic convection-diffusionproblems. The scheme is unconditionally stable, independentof the diffusion coefficient, even in the case when numericalquadrature is used. The theoretical predictions are illustratedby a series of numerical experiments. For the periodic case,our results present a significant improvement on those givenby Süli & Ware (1991) SIAM J. Numer.Anal.28, 423-445).  相似文献   
10.
The X‐ray diffraction has revealed that the polycrystalline hexagonal structured α‐In2Se3 thin films grown at substrate temperature of 200 °C with the unit cell parameters a = 4.03 Å and c = 19.23 Å becomes polycrystalline hexagonal structured InSe with a unit cell parameters of a = 4.00 Å and c = 16.63 Å by Cd‐doping. The analysis of the conductivity temperature dependence in the range 300‐40 K revealed that the thermionic emission of charged carriers and the variable range hopping are the predominant conduction mechanism above and below 100 K, respectively. Hall measurements revealed that the mobility is limited by the scattering of charged carriers through the grain boundaries above 200 K and 120 K for the undoped and Cd‐doped samples, respectively. The photocurrent (Iph) increases with increasing illumination intensity (F) and decreasing temperature up to a maximum temperature of ∼100 K, below which Iph is temperature invariant. It is found to have the monomolecular and bimolecular recombination characters at low and high illumination intensities, respectively. The Cd‐doping increases the density of trapping states that changes the position of the dark Fermi level leading to the deviation from linearity in the dependence of Iph on F at low illumination intensities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号