首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   7篇
物理学   8篇
  2014年   1篇
  2011年   1篇
  2010年   2篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
We systematically investigate the motion of slowly moving matter--wave gap solitons in a nonlinear potential, produced by the weak random spatial variation of the atomic scattering length. With the weak randomness, we construct an effective-particle theory to study the motion of gap solitons. Based on the effective-particle theory, the effect of the randomness on gap solitons is obtained, and the motion of gap solitons is finally solved. Moreover, the analytic results for the general behaviours of gap soliton motion, such as the ensemble-average speed and the reflection probability depending on the weak randomness are obtained. We find that with the increase of the random strength the ensemble-average speed of gap solitons decreases slowly where the reduction is proportional to the variance of the weak randomness, and the reflection probability becomes larger. The theoretical results are in good agreement with the numerical simulations based on the Gross--Pitaevskii equation.  相似文献   
2.
We investigate the localization properties of light propagating in two-dimensional systems with impedance-matched meta-material scatterers which are randomly positioned. Numerically, the localization length ξ versus the index of meta-material is obtained first. We find that, unlike traditional random systems, the localization length of such meta-material random systems does not depend on the total scattering cross section of scatterers, but on the back-scattering cross-section of scatterers. Furthermore, our analysis shows that there are “back-scattering paths of single scattere” in such meta-material systems, which can cause a strong localization effect. Such back-scattering paths inside single scatterers can be thought of as the supplement to the traditional back-scattering paths of multiple scatterers.  相似文献   
3.
Based on a modified retrieving method, we demonstrate that hyperbolic metamaterials(HMs) have considerable robustness against disorders, even when the disorder strength is quite large. Our retrieval method is more precise when retrieving the parameters for anisotropic metamaterials. We also show that the light’s negative refraction of an HM is nearly unaffected when relatively large disorders exist. These results help us to understand the HMs and they have a direct significance for experiments.  相似文献   
4.
We investigate the dynamic characteristics of metamaterial systems, such as the temporal coherence gain of the superlens, the causality limitation on the ideal cloaking systems, the relaxation process and essential elements in the dispersive cloaking systems, and the extending of the working frequency range of cloaking systems. The key point of our study is the physical dispersive properties of metamaterials, which are well-known to be intrinsically strongly dispersive. With physical dispersion, new physical pictures can be obtained for the waves propagating inside metamaterial, such as the “group retarded time” for waves inside the superlens and cloak, the causality limitation on real metamaterial systems, and the essential elements for design optimization. Therefore, we believe the dynamic study of metamaterials will be an important direction for further research. All theoretical derivations and conclusions are demonstrated by powerful finite-difference time-domain simulations.  相似文献   
5.
We report a self-collimating demonstration in planar photonic crystals (PhCs) fabricated in silicon-on-insulator (SOI) wafers using 0.18 μm silicon complimentary metal oxide semiconductor (CMOS) techniques. The emphasis was on demonstrating the self-collimation effect by using the standard CMOS equipment and process development of an optical test chip using a high-volume manufacturing facility. The PhCs are designed on the 230-nm-top-Si layer using a square lattice of air holes 280 nm in diameter. The lattice constant of the PhCs is 380 nm. The experimentally obtained wavelengths for self-collimation are in excellent agreement with theory.  相似文献   
6.
A photonic crystal polarization beam splitter based on the self-collimation effect is proposed. By means of the plane wave expansion method and the finite-difference time-domain method, we analyse the splitting mechanism in two alternative ways: performing a band gap structure analysis and simulating the field distribution. The results indicate that two beams of different polarizations can be split with an extinction ratio of nearly 20 dB in a wavelength range of POnm. The splitter may have practical applications in integrated photonic circuits.  相似文献   
7.
One-dimensional quasicrystal structures composed of Ⅲ-Ⅴ semiconductor GaAs/AlGaAs multilayers in deterministic Thue-Morse (TM) sequences have been grown by using gas-source molecular beam epitaxy to investigate both the structural and the photonic bandgap properties. The x-ray measurements show that this aperiodic system exhibits obvious periodic spatial correlations, from which the precise thickness of the constitutive layers could be determined. Transmission and reflection measurements experimentally demonstrated plenty of photonic bandgaps with traditional or fractal features existing in those quasicrystal structures, which are in good agreement with the transfer matrix simulations. The diversity of this TM system makes it a good candidate for photonic device applications.  相似文献   
8.
We investigate a p-polarized plane wave transmitted through a metallic slit-bump nanostructure using the finite difference time domain simulation. It is found that narrow bumps with suitable separation can diffract surface plasmons into highly directional collimating beams. The number and directionality of the beams can be controlled by adjusting the geometry parameters of the nanostructure. The structure with optimized parameters may be interesting for practical applications as directional nanoslit SPP-light coupler in integrated photonic devices.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号