首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
物理学   4篇
  2024年   1篇
  2019年   2篇
  2018年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
In this Letter, we have shown that a giant Goos–H?nchen shift of a light beam reflected at terahertz frequencies can be achieved by using a composite structure, where monolayer graphene is coated on one-dimensional photonic crystals separated by a dielectric slab. This giant Goos–H?nchen shift originates from the enhancement of the electrical field, owing to the excitation of optical Tamm states at the interface between the graphene and onedimensional photonic crystal. It is shown that the Goos–H?nchen shift in this structure can be significantly enlarged negatively and can be switched from negative to positive due to the tunability of graphene's conductivity. Moreover, the Goos–H?nchen shift of the proposed structure is sensitive to the relaxation time of graphene and the thickness of the top layer, making this structure a good candidate for a dynamic tunable optical shift device in the terahertz regime.  相似文献   
2.
The optical Tamm state(OTS), which exists generally at the interface between metal and a dielectric Bragg mirror, has been studied extensively in the visible and near infrared spectra. Nevertheless, OTS in the terahertz(THz) region normally receives far less attention. In this Letter, we demonstrate the physical mechanism of OTS at the interface between graphene and a dielectric Bragg mirror in the THz frequency band by applying the transfer matrix method and dispersion characteristics. Based on such mechanisms, we propose an efficient method that can precisely generate and control OTS at a desired angle and frequency. Moreover, we show that the OTS is dependent on the optical conductivity of graphene, making the graphene–dielectric-Bragg-mirror a good candidate for dynamic tunable OTS device in the THz frequency range.  相似文献   
3.
The Goos-H?nchen(GH) shift of graphene in the terahertz frequency range is investigated, and an extremely high GH shift is obtained owing to the excitation of surface plasmon resonance in graphene in the modified Otto configuration.It is shown that the GH shift can be positive or negative, and can be enhanced by introducing a nonlinearity in the substrate.Large and bistable GH shifts are demonstrated to be due to the hysteretic behavior of the reflectance phase. The bistable GH shift can be manipulated by changing the thickness of the air gap and the Fermi level or relaxation time of graphene.  相似文献   
4.
Optical bistability(OB) is capable of rapidly and reversibly transforming a parameter of an optical signal from one state to another, and homologous nonlinear optical bistable devices are core components of high-speed all-optical communication and all-optical networks. In this paper, we theoretically investigated the controllable OB from a Fabry–Pérot(FP) cavity with a nonlinear three-dimensional Dirac semimetal(3D DSM) in the terahertz band. The OB stems from the third-order nonlinear bulk cond...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号