首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   6篇
数学   1篇
物理学   6篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2005年   2篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
任新成  郭立新  焦永昌 《物理学报》2012,61(14):144101-144101
采用土壤介电常数的四成分模型和雪的介电常数模型分别表示实际的地面和雪层的介电特性, 应用指数型分布粗糙面模型和Monte Carlo方法模拟实际的粗糙地面, 运用时域有限差分方法研究了雪层覆盖的粗糙地面与上方矩形截面柱的复合电磁散射问题. 得出了复合电磁散射系数的角分布曲线, 计算了双站复合散射系数随土壤与雪层粗糙度参数、介电参数、 矩形截面柱几何参数、介电参数等的变化情况, 并做了详细分析与讨论. 得到了雪层覆盖的粗糙地面与上方矩形截面柱复合电磁散射特性.  相似文献   
2.
 介绍用于Φ7.3 m Cassegrain天线的高功率馈源喇叭的设计。为使E面和H面方向图在照射区域内具有高的等化度,选择双模圆锥喇叭作为馈源的结构形式。由于高功率源采用BJ-32波导输出信号,故馈源系统中还应包含一个矩形到圆形的模式转换器,将TE10模转换为TE11模。设计了双模圆锥喇叭和模式转换器,并进行了功率容量估算。测试结果表明,所设计的馈源达到了设计要求,理论计算结果和实验测试数据吻合良好。  相似文献   
3.
 基于圆波导TE11模的模式简并特性和微波在椭圆波导中传输两个正交TE11模式相速不同的性质,研制了一种带有椭圆波导结构的圆波导TE11模圆极化器。该圆极化器通过圆波导到椭圆波导的过渡段,将输入的线极化TE11模式分成两个等幅、正交的TE11模,然后调整椭圆波导长度,使得两个正交的TE11模式的相位差为90°,实现了TE11模式微波线极化到圆极化的转换。利用时域有限差分软件优化设计了该圆极化器,并按照优化的结构尺寸加工了一套实验装置进行了实验测试,测试结果表明:在工作频率9~10 GHz范围内,该圆极化器轴比小于1 dB,驻波比小于1.1,且功率容量大于1.6 GW。  相似文献   
4.
三镜波束波导在高功率微波天线中的应用   总被引:4,自引:4,他引:0       下载免费PDF全文
通过对波束波导馈电卡塞格仑天线工作原理的分析,论述了波束波导在高功率微波辐射天线中的应用及设计方法,重点介绍了一套利用波束波导馈电高功率微波辐射天线。该天线利用由三面反射镜组成的波束波导对一个由两个抛物面镜组成的双反射面天线进行馈电,实现了波束的快速扫描。该天线工作在X波段时,功率容量大于1GW,天线增益大于50dB。  相似文献   
5.
X波段馈源输出窗高功率微波击穿实验装置   总被引:1,自引:0,他引:1       下载免费PDF全文
为了开展高功率微波(HPM)馈源输出窗介质击穿实验研究,设计了一种组合型X波段高功率微波(HPM)喇叭馈源击穿实验装置。装置采用变张角喇叭与可移动介质输出窗组合的结构,通过调节变张角喇叭口面与输出窗间的距离,使得介质输出窗内表面电场强度可调。数值模拟结果表明:在满足馈源喇叭驻波比小于1.15,E面和H面基本等化的情况下,当调节变张角喇叭口面与介质输出窗距离在0~400 mm范围内变化时,HPM馈源输出窗上的电场强度变化为32.6~87.0 kV.cm-1,满足了在真空度3×10-3Pa、脉冲宽度20 ns条件下,HPM介质击穿对电场强度变化的要求。根据数值模拟结果,设计加工了HPM介质击穿实验装置,并成功地应用于GW级HPM馈源输出窗介质击穿实验研究。  相似文献   
6.
由于非线性两层规划具有非凸性、NP-难等计算困难,高效的算法并不多见。本文设计了一种新的进化算法,基于此进化算法提出了求解带有一重或多重下层的非线性两层规划的高效算法。该算法充分利用两层规划的结构特点。最后,给出了六个不同类型的算例,数值结果表明,本算法是快速和有效的。  相似文献   
7.
功率容量大于1GW的组合式旋转关节   总被引:2,自引:2,他引:0       下载免费PDF全文
用耦合波理论分析了过模圆波导中不同模式之间的转换和波导弯曲半径之间的关系,研制了弯曲角度为90°的过模圆波导弯头,设计了一种结构简单的TM01过模圆波导旋转结构。对圆波导弯头和旋转结构的高功率测试证明,它们在X波段功率容量均大于1 GW,微波传输效率均大于93%。在此基础上,提出了一种组合式旋转关节,该关节能够在方位和俯仰上实现360°旋转,可应用于高功率微波的发射天线。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号