首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   5篇
物理学   8篇
  2023年   1篇
  2019年   1篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  1997年   1篇
  1993年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
刘冶华  李有泉 《中国物理 B》2015,24(1):17506-017506
We review the recent progress on the magnetic skyrmions in chiral magnetic materials.The magnetic skyrmion is a topological spin configuration with localized spatial extent,which could be thought of as an emergent rigid particle,owing to its particular topological and chiral properties.Static skyrmionic configurations have been found in various materials with different transport and thermodynamic properties.The magnetic skyrmions respond to externally applied fields in a very unique way,and their coupling to other quasiparticles in solid-state systems gives rise to the emergent electrodynamics.Being not only theoretically important,the magnetic skyrmion is also very promising to be the information carrier in next generation spintronic devices.  相似文献   
2.
介观电路中电荷的量子效应   总被引:38,自引:2,他引:36       下载免费PDF全文
陈斌  李有泉  沙健  张其瑞 《物理学报》1997,46(1):129-133
基于介观电路中电荷是量子化的基本事实,给出了介观电路的量子理论,并讨论了介观LC电路的量子涨落 关键词:  相似文献   
3.
黎曼面的单值化与刘维场论   总被引:2,自引:0,他引:2       下载免费PDF全文
讨论了带puncture黎曼面上刘维场的monodromy,计算得到了与Fuchsian单值化紧密相联的刘维场经典交换代数和4n2×4n2阶的交换矩阵,讨论了它与SL(2n,R)的联系及其它性质。 关键词:  相似文献   
4.
自旋轨道耦合系统中的自旋流与自旋霍尔效应   总被引:2,自引:0,他引:2  
作为自旋电子学的重要研究内容,如何在固态系统中产生、操控以及探测自旋流引起了研究人员的广泛兴趣.基于自旋轨道耦合的自旋霍尔效应为在非磁性半导体中产生自旋流提供了一种有效途径.然而,在具有自旋轨道耦合的系统中,自旋流并不守恒.如何理解这点并恰当地表述相应的连续性方程,成为自旋输运研究的基本问题之一.本文主要综述自旋轨道耦合系统中自旋流与自旋霍尔效应方面的研究进展.引入SU(2)规范势后,自旋流满足协变形式的连续性方程,该方程保证了SU(2)Kubo公式在不同规范固定下的自洽性.利用SU(2)场强张量,可以直接得到自旋密度和自旋流在SU(2)外场中受到的白旋力,该力在只有U(1)磁场时对应于Stern-Gerlach力.由于依赖杂质散射的外在自旋霍尔效应很难被利用,内在自旋霍尔效应的概念被提出:在非磁半导体中,U(1)电场会诱导出自旋流并导致系统边缘处的自旋积累.自旋霍尔效应已经在半导体和金属材料中被观察到.虽然在干净的二维电子气中自旋霍尔电导率是一普适常数e/8π,但杂质对它的影响却引起了人们的高度关注.通过引入退相干效应,自旋霍尔效应中杂质效应的一些令人困惑的理论结果,则得到清晰的解释.此外,本文还将介绍具有层间隧穿的双层二维电子气中的自旋输运现象.在能量简并点附近,自旋霍尔电导率和隧穿白旋电导率均会出现共振现象.当两层间的杂质势强度存在差异时,隧穿自旋电导率随门压的变化曲线呈现出非对称性,显示出自旋二极管效应.  相似文献   
5.
多铁性材料是一类新型多功能材料,其中磁有序与铁电序共存,且序参量之间存在非平庸的相互耦合效应。这使其具有巨大的工业应用前景并蕴含着丰富和有趣的基础物理问题。本文首先简要回顾多铁性材料研究的历史,重点介绍由磁有序引起的新型多铁性材料的实验和理论的新进展。随后,我们系统地概述多铁性材料中演生的一类新的元激发(即电磁振子)的物理特性以及当前对其产生机制的理解。最后,我们总结了多铁性材料研究中尚未解决的技术问题,并展望了多铁性材料的发展趋势。  相似文献   
6.
作为自旋电子学的重要研究内容,如何在固态系统中产生、操控以及探测自旋流引起了研究人员的广泛兴趣。基于自旋轨道耦合的自旋霍尔效应为在非磁性半导体中产生自旋流提供了一种有效途径。然而,在具有自旋轨道耦合的系统中,自旋流并不守恒。如何理解这点并恰当地表述相应的连续性方程,成为自旋输运研究的基本问题之一。本文主要综述自旋轨道耦合系统中自旋流与自旋霍尔效应方面的研究进展。引入SU(2)规范势后,自旋流满足协变形式的连续性方程,该方程保证了SU(2)Kubo公式在不同规范固定下的自洽性。利用SU(2)场强张量,可以直接得到自旋密度和自旋流在SU(2)外场中受到的自旋力,该力在只有U(1)磁场时对应于Stern-Gerlach力。由于依赖杂质散射的外在自旋霍尔效应很难被利用,内在自旋霍尔效应的概念被提出:在非磁半导体中,U(1)电场会诱导出自旋流并导致系统边缘处的自旋积累。自旋霍尔效应已经在半导体和金属材料中被观察到。虽然在干净的二维电子气中自旋霍尔电导率是一普适常数e/8π,但杂质对它的影响却引起了人们的高度关注。通过引入退相干效应,自旋霍尔效应中杂质效应的一些令人困惑的理论结果,则得到清晰的解释。此外,本文还将介绍具有层间隧穿的双层二维电子气中的自旋输运现象。在能量简并点附近,自旋霍尔电导率和隧穿自旋电导率均会出现共振现象。当两层间的杂质势强度存在差异时,隧穿自旋电导率随门压的变化曲线呈现出非对称性,显示出自旋二极管效应。  相似文献   
7.
In the traditional random-conformational-search model,various hypotheses with a series of meta-stable intermediate states were proposed to resolve the Levinthal paradox in protein-folding time.Here we introduce a quantum strategy to formulate protein folding as a quantum walk on a definite graph, which provides us a g'eneral framework without making hypotheses.Evaluating it by the mean of first passage time,we find that the folding time via our quantum approach is much shorter than the one obtained via.classical random walks.This idea is expected to evoke more insights for future studies.  相似文献   
8.
Quantum teleportation scheme is undoubtedly an inspiring theoretical discovery as an amazing application of quantum physics, which was experimentally realized several years later. For the purpose of quantum communication via this scheme, an entangled ancillary pair shared by Alice and Bob is the essential ingredient, and a quantum memory in Bob’s system is necessary for him to keep the quantum state until the classical message from Alice arrives. Yet, the quantum memory remains a challenge in bo...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号