首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   11篇
物理学   14篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
针对低磁场相对论磁控管高功率微波器件实验驱动需求,对基于脉冲形成网络(PFN)储能的高功率脉冲产生技术进行了研究。为了使其结构紧凑且具有较好的输出脉冲波形,设计了半环形PFN脉冲形成单元,两个半环形带状PFN与一体化开关、绝缘盘组成圆环形高压脉冲产生模块。PFN脉冲形成单元由13个陶瓷电容与半环形金属电极板构成,多个高压脉冲产生模块同轴层叠,所有开关导通后各模块PFN串联放电,产生快前沿高功率方波脉冲,再通过对触发开关和充电电源的同步控制实现重频工作。采用电磁仿真软件对PFN物理结构进行优化设计,研制的高压脉冲产生模块充电51 kV在负载8.5?上输出电压峰值49.6 kV、脉冲半高宽108 ns、脉冲前沿14 ns、平顶(90%~90%) 74 ns,具有较好的方波特性;11个高压脉冲产生模块层叠集成为1个22级紧凑PFN-Marx装置,在充电51 kV的条件下,84?负载上获得峰值516 kV的高电压脉冲输出,半高宽104 ns、平顶63 ns、脉冲前沿11 ns,实现了20 Hz连续15 s重频稳定工作,输出波形完全一致。  相似文献   
2.
为了减小脉冲功率源装置的体积, 对三电极气体开关和两电极气体开关的结构进行了小型化设计。采用电磁场仿真软件对局部结构进行优化, 对初步设计的触发开关和自击穿开关在不同SF6气压(0~0.2 MPa)、不同开关间隙条件下的击穿电压及触发工作电压等进行了实验研究。结果表明:设计的触发开关和自击穿开关在0~0.2 MPa气压范围内, 自击穿电压随气压具有很好的线性关系; 自击穿开关间隙为8 mm, 改变气压(0.1~0.2 MPa)可实现自击穿电压90~125 kV可调; 触发开关主间隙为7 mm, 改变气压(0.1~0.2 MPa)可实现触发工作电压40~95 kV 可调; 初步估算, 触发开关和自击穿开关的工作电感均约20 nH。利用重频脉冲电源, 测试了开关的重频工作能力, 在工作电压80 kV、导通电流约20 kA的条件下, 重复工作频率在20 Hz以上。此外, 利用研制的开关构建了八级紧凑型Marx发生器, 实现了5和10 Hz重频多脉冲输出。  相似文献   
3.
基于快Marx发生器技术路线,研制了一套具有高功率密度的低阻抗紧凑型重频脉冲驱动源。采用18级Marx发生器电路结构,每级由1只60 nF/100 kV脉冲电容器、1个气体开关及隔离电感构成,每两级构成一个模块,整体采用SF6气体绝缘,储能密度达到25.7 kJ/m3;采取开放式气体开关,其中两级为触发开关,其余为过电压自击穿开关;触发源采用小型化Marx电路及绝缘胶真空灌封设计。实验中脉冲驱动源单次工作时在约18 阻抗负载上输出电压达到765 kV、脉宽约160 ns、前沿约50 ns,功率密度达到157 GW/m3;受充电电源功率限制,重复频率5 Hz充电70 kV,连续5脉冲输出功率约17 GW,脉冲波形重复性较好。  相似文献   
4.
爆炸驱动铁电体脉冲电源利用铁电陶瓷在冲击压力作用下去极化释放电荷而产生电流,可以作为脉冲功率源的初始电源,也可直接驱动高阻抗负载产生脉冲高电压。通常情况下,铁电陶瓷可以看作理想的绝缘体,但在数GPa冲击波压力作用下,铁电陶瓷电阻率可能会明显下降并形成漏电导,使部分去极化释放电荷在铁电陶瓷内部流失,导致铁电陶瓷剩余极化电荷输出效率下降。以PZT95/5铁电陶瓷作为初始储能介质,以爆炸冲击波加载PZT95/5铁电陶瓷释放电荷对脉冲电容器充电,充电结束后电容器电压维持期间检测到明显的反向电流,根据铁电陶瓷输出电流和工作电压,得到冲击波作用过程中铁电陶瓷的瞬态电阻率曲线,并分析了电阻率下降对输出电荷的影响。进一步研究表明,冲击压力在铁电陶瓷边侧产生的稀疏波是引起电荷输出效率降低的主要因素,而铁电陶瓷电阻率下降对电荷输出效率的影响很小。  相似文献   
5.
目前制备纳米材料的方法很多,其中电爆炸丝法制备纳米粉末材料是20世纪90年代后期发展起来的新型方法,俄罗斯和日本研究人员利用该方法成功制备多种金属和金属化合物纳米粉末。我国吉林大学利用该方法制备了纳米Cu-Zn合金粉末,其粒度分布在30~180nm,平均粒度约85nm。为了探索电爆炸金属丝技术在制备纳米粉末及其相关产品中的应用前景,文中对电爆炸金属丝产生纳米Al2O3和TiO2进行了实验研究,并在此基础上开展了电爆炸金属丝制备负载型纳米催化剂的初步研究。  相似文献   
6.
紧凑型爆炸脉冲电源   总被引:2,自引:1,他引:1       下载免费PDF全文
采用等效电路模型程序——BCYSSYS对系统参数进行优化,设计了04型爆磁压缩发生器及用04型发生器驱动的紧凑型爆炸脉冲电源。紧凑型爆炸脉冲电源长度小于1.2 m,直径0.4 m,质量约100 kg。实验结果表明:04型爆磁压缩发生器能够在3μH电感负载上获得脉宽约10μs、峰值为100 kA的脉冲大电流输出;当负载电阻为8.7Ω时,输出电功率大于20 GW。典型实验结果与采用BCYSSYS程序得到的计算结果吻合较好,验证了BCYSSYS程序用于爆炸脉冲电源理论设计的可行性。  相似文献   
7.
 研究了电感储能功率调节装置中的电爆炸丝断路开关在强电流作用下发生电爆炸后,储能电感上感生的高压脉冲驱动脉冲变压器在低阻抗(19 Ω)负载上得到的电脉冲。利用Ansoft Simplorer 7仿真软件建立了相关模块化集中参数电路模型,首先估算选取典型电路参数进行了程序编制、调试和模拟计算,得到了正确收敛的数值结果。在此基础上进行了实验研究,并将实际电路参数代入电路模型计算,模拟程序得到了与实验吻合的计算结果。现有研究表明,电爆炸丝驱动脉冲变压器在低阻抗负载上不能产生超高压脉冲,但可显著展宽负载得到的电压脉宽,在需要长脉宽应用场合有潜在的应用前景。  相似文献   
8.
为减小脉冲功率源装置的体积,对场畸变三电极轨道气体开关和两电极轨道气体开关结构进行了小型化低电感设计,采用电磁场仿真软件对局部结构进行优化,对初步设计的触发开关和自击穿开关在不同气压(0~0.3MPa)和不同气体介质(N2,SF6,以及二者混合)条件下的击穿电压及导通电感等进行了研究。研究表明:小型触发开关和自击穿开关在0~0.3MPa气压范围内自击穿电压随气压具有较好的线性关系;相同气压下SF6气体的自击穿电压约为N2气体的两倍;N2与SF6压力按3∶2混合的自击穿电压约为纯SF6气体的0.8~0.9倍;内部充入0.25MPa气压的SF6气体时,触发开关和自击穿开关均可在190kV左右正常工作。根据实验中出现的开关沿面击穿现象,对开关的沿面绝缘能力进行了优化设计,并得到了实验验证。另外通过短路放电测试,得到触发开关电感约22nH,自击穿开关电感约20nH,开关导通电流大于20kA,多次放电后电极烧蚀痕迹分布均匀。  相似文献   
9.
电爆炸丝法制备纳米Al2O3粉末   总被引:4,自引:0,他引:4       下载免费PDF全文
 设计了电爆炸金属丝产生纳米金属氧化物粉末的实验装置,金属丝电爆炸腔采用圆筒结构,纳米粉末经过微孔滤膜过滤收集。成功制备了纳米Al2O3粉末,其平均粒度达到64.9 nm。对电爆炸金属丝产生纳米Al2O3粉末的物理条件进行了研究。结果表明实验条件对粉末粒度有重要影响:随气压的增加粉末平均粒度变大;随金属丝直径增大粉末平均粒度变大;粉末的平均粒度与电容器的初始储能也有一定的关系。  相似文献   
10.
针对紧凑型高功率脉冲驱动源的重复频率充电需求,开展了基于LC全桥串联谐振原理的恒流充电技术研究,并根据紧凑型Marx脉冲功率源的工作方式开展了电源关键参数设计,完成了一种正负双极性充电的紧凑型高压电源研制,实现20 ms内对单边等效负载电容为0.15μF的双极性Marx驱动源充电至±45 kV,平均充电功率大于15.5 kW。该电源采用单个高频高压变压器实现了正负双极性高电压同步输出;采用变压器、整流电路、隔离保护电路、电压检测电路一体化绝缘封装设计,既减小了装置体积又降低了高压绝缘风险;通过隔离保护、电磁屏蔽等设计有效解决了Marx发生器放电过程中瞬时高压信号对电源控制系统的干扰和损伤。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号