首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学   7篇
力学   1篇
数学   2篇
  2022年   2篇
  2021年   4篇
  2018年   1篇
  2015年   1篇
  2012年   1篇
  2009年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Zanthoxylum species (Syn. Fagara species) of the Rutaceae family are widely used in many countries as food and in trado-medicinal practice due to their wide geographical distribution and medicinal properties. Peer reviewed journal articles and ethnobotanical records that reported the traditional knowledge, phytoconstituents, biological activities and toxicological profiles of Z. species with a focus on metabolic and neuronal health were reviewed. It was observed that many of the plant species are used as food ingredients and in treating inflammation, pain, hypertension and brain diseases. Over 500 compounds have been isolated from Z. species, and the biological activities of both the plant extracts and their phytoconstituents, including their mechanisms of action, are discussed. The phytochemicals responsible for the biological activities of some of the species are yet to be identified. Similarly, biological activities of some isolated compounds remain unknown. Taken together, the Z. species extracts and compounds possess promising biological activities and should be further explored as potential sources of new nutraceuticals and drugs.  相似文献   
2.

Multiple linear regression model based on normally distributed and uncorrelated errors is a popular statistical tool with application in various fields. But these assumptions of normality and no serial correlation are hardly met in real life. Hence, this study considers the linear regression time series model for series with outliers and autocorrelated errors. These autocorrelated errors are represented by a covariance-stationary autoregressive process where the independent innovations are driven by shape mixture of skew-t normal distribution. The shape mixture of skew-t normal distribution is a flexible extension of the skew-t normal with an additional shape parameter that controls skewness and kurtosis. With this error model, stochastic modeling of multiple outliers is possible with an adaptive robust maximum likelihood estimation of all the parameters. An Expectation Conditional Maximization Either algorithm is developed to carryout the maximum likelihood estimation. We derive asymptotic standard errors of the estimators through an information-based approximation. The performance of the estimation procedure developed is evaluated through Monte Carlo simulations and real life data analysis.

  相似文献   
3.
A tripodal Schiff base ligand, 2,4,6-Tris(4-carboxybenzimino)-1,3,5-triazine (MT) and its trinuclear Dy(III), Er(III), and Gd(III) complexes were synthesized. These were characterized using UV-visible, IR, 1H, and 13C NMR spectroscopies, elemental analysis, and molar conductivity measurements. The spectral studies indicate that the ligand is hexadentate and coordinates to the Ln(III) ions through the oxygen atoms of the carboxylic group. The trinuclear complexes were characterized as being bridged by carboxylate anions to the Dy(III), Er(III), and Gd(III) salen centers and displaying a coordination number of six. Biological studies revealed that MT is more active against the test micro-organisms relative to the trinuclear complexes. Acute toxicity studies revealed that MT is safe and has a wide range of effective doses (ED50). In vivo antimalarial studies indicate that MT could serve as an effective antimalarial agent since it has parasitemia inhibition of 84.02% at 50 mg/kg and 65.81% at 25 mg/kg, close to the value (87.22%) of the standard drug—Artesunate. Molecular docking simulation studies on the compounds against SARS-CoV-2 (6Y84) and E. coli DNA gyrase (5MMN) revealed effective binding interactions through multiple bonding modes. The binding energy calculated for Er(III)MT-6Y84 and Er(III)MT-5MMN complexes showed active molecules with the ability to inhibit SARS-CoV-2 and E. coli DNA gyrase.  相似文献   
4.
Fine layers of barium stannate nanoparticles have been synthesized by sol–gel technique with tin chloride pentahydrate (SnCl4·5H2O) and barium sulphate (BaSO4). Physico-chemical properties of barium stannate, BaxSnO2+y; x:y ≈ 1:1 were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and UV–Visible spectrophotometry technique. A growth mechanism based on the combination of particle sticking and molecule level heterogeneous growth is proposed. It has been found that the particle size of all the samples was distributed in the range 3.0–6.5 ? while optical absorption spectrum indicates that BaxSnO2+y nanoparticles have a direct band gap of 3.9 eV.  相似文献   
5.
Terminalia sericea is used throughout Africa for the treatment of a variety of conditions and has been identified as a potential commercial plant. The study was aimed at establishing a high-performance thin layer chromatography (HPTLC) chemical fingerprint for T. sericea root bark as a reference for quality control and exploring chemical variation within the species using HPTLC metabo3lomics. Forty-two root bark samples were collected from ten populations in South Africa and extracted with dichloromethane: methanol (1:1). An HPTLC method was optimized to resolve the major compounds from other sample components. Dichloromethane: ethyl acetate: methanol: formic acid (90:10:30:1) was used as the developing solvent and the plates were visualized using 10% sulfuric acid in methanol as derivatizing agent. The concentrations of three major bioactive compounds, sericic acid, sericoside and resveratrol-3-O-β-rutinoside, in the extracts were determined using a validated ultra-performance liquid chromatography-photodiode array (UPLC-PDA) detection method. The rTLC software (written in the R-programming language) was used to select the most informative retardation factor (Rf) ranges from the images of the analysed sample extracts. Further chemometric models, including principal component analysis (PCA) and hierarchical cluster analysis (HCA), were constructed using the web-based high throughput metabolomic software. The rTLC chemometric models were compared with the models previously obtained from ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS). A characteristic fingerprint containing clear bands for the three bioactive compounds was established. All three bioactive compounds were present in all the samples, although their corresponding band intensities varied. The intensities correlated with the UPLC-PDA results, in that samples containing a high concentration of a particular compound, displayed a more intense band. Chemometric analysis using HCA revealed two chemotypes, and the subsequent construction of a loadings plot indicated that sericic acid and sericoside were responsible for the chemotypic variation; with sericoside concentrated in Chemotype 1, while sericic acid was more abundant in Chemotype 2. A characteristic chemical fingerprint with clearly distinguishable features was established for T. sericea root bark that can be used for species authentication, and to select samples with high concentrations of a particular marker compound(s). Different chemotypes, potentially differing in their therapeutic potency towards a particular target, could be distinguished. The models revealed the three analytes as biomarkers, corresponding to results reported for UPLC-MS profiling and thereby indicating that HPTLC is a suitable technique for the quality control of T. sericea root bark.  相似文献   
6.
In this work, coreflood studies were carried out to determine the recovery benefits of low salinity waterflood compared to high salinity waterflood and the role of wettability in any observed recovery benefit. Two sets of coreflood experiments were conducted; the first set examined the EOR potential of low salinity floods in tertiary oil recovery processes, while the second set of experiments examined the secondary oil recovery potential of low salinity floods. Changes in residual oil saturation with variation in wettability, brine salinity and temperature were monitored. All the coreflood tests gave consistent increase in produced oil, corresponding to reduction in residual oil saturation and increase in water-wetness (for the second set of experiments) with decrease in brine salinity and increase in brine temperature.  相似文献   
7.
Breonadia salicina (Vahl) Hepper and J.R.I. Wood is widely used in South Africa and some other African countries for treatment of various infectious diseases such as diarrhea, fevers, cancer, diabetes and malaria. However, little is known about the active constituents associated with the biological activities. This study is aimed at exploring the metabolomics profile and antioxidant constituents of B. salicina. The chemical profiles of the leaf, stem bark and root of B. salicina were comprehensively characterized using proton nuclear magnetic resonance (1H-NMR) spectroscopy and ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). The antioxidant activities of the crude extracts, fractions and pure compounds were determined using the DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging and reducing power assays. A total of 25 compounds were tentatively identified using the UPLC-QTOF-MS. Furthermore, the 1H-NMR fingerprint revealed that the different parts of plant had differences and similarities among the different crude extracts and fractions. The crude extracts and fractions of the root, stem bark and leaf showed the presence of α-glucose, β-glucose, glucose and fructose. However, catechin was not found in the stem bark crude extracts but was found in the fractions of the stem bark. Lupeol was present only in the root crude extract and fractions of the stem bark. Furthermore, 5-O-caffeoylquinic acid was identified in the methanol leaf extract and its respective fractions, while the crude extracts and fractions from the root and dichloromethane leaf revealed the presence of hexadecane. Column chromatography and preparative thin-layer chromatography were used to isolate kaempferol 3-O-(2″-O-galloyl)-glucuronide, lupeol, d-galactopyranose, bodinioside Q, 5-O-caffeoylquinic acid, sucrose, hexadecane and palmitic acid. The crude methanol stem bark showed the highest antioxidant activity in the DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging activity with an IC50 value of 41.7263 ± 7.6401 μg/mL, whereas the root crude extract had the highest reducing power activity with an IC0.5 value of 0.1481 ± 0.1441 μg/mL. Furthermore, the 1H-NMR and UPLC-QTOF-MS profiles showed the presence of hydroxycinnamic acids, polyphenols and flavonoids. According to a literature survey, these phytochemicals have been reported to display antioxidant activities. Therefore, the identified hydroxycinnamic acid (caffeic acid), polyphenol (ellagic acid) and flavonoids (catechin and (epi) gallocatechin) significantly contribute to the antioxidant activity of the different parts of plant of B. salicina. The results obtained in this study provides information about the phytochemistry and phytochemical compositions of Breonadia salicina, confirming that the species is promising in obtaining constituents with medicinal potential primarily antioxidant potential.  相似文献   
8.
This study was aimed at characterising the secondary metabolites responsible for antibacterial and antioxidant activities of Acalypha wilkesiana. Purification of the defatted methanol leaves extract was guided by the DPPH free radical scavenging assay as well as by evaluation of the antibacterial activity against four bacterial strains. As a result, geraniin, corilagin, quadrangularic acid M and shikimic acid were purified and isolated. Shikimic acid, reported for the first time from this plant, proved to be the major metabolite of the extract. All the four isolated compounds showed bactericidal activity against extended spectrum beta-lactamase-producing Klebsiella pneumoniae (700603), while corilagin was the single compound to exhibit antioxidant activity (IC50 53 μg/mL).  相似文献   
9.
The main purpose of this paper is to introduce a viscosity-type iterative algorithm for approximating a common solution of a split variational inclusion problem and a fixed point problem. Using our algorithm, we state and prove a strong convergence theorem for approximating a common solution of a split variational inclusion problem and a fixed point problem for a multivalued quasi-nonexpansive mapping between a Hilbert space and a Banach space. Furthermore, we applied our results to study a split convex minimization problem. Also, a numerical example of our result is given. Our results extend and improve the results of Byrne et al. (J. Nonlinear Convex Anal. 13, 759–775, 2012), Moudafi (J. Optim. Theory Appl. 150, 275–283, 2011), Takahashi and Yao (Fixed Point Theory Appl. 2015, 87, 2015), and a host of other important results in this direction.  相似文献   
10.
Synthesis of sulfonamide through an indirect method that avoids contamination of the product with no need for purification has been carried out using the indirect process. Here, we report the synthesis of a novel sulfonamide compound, ({4-nitrophenyl}sulfonyl)tryptophan (DNSPA) from 4-nitrobenzenesulphonylchloride and L-tryptophan precursors. The slow evaporation method was used to form single crystals of the named compound from methanolic solution. The compound was characterized by X-ray crystallographic analysis and spectroscopic methods (NMR, IR, mass spectrometry, and UV-vis). The sulfonamide N-H NMR signal at 8.07–8.09 ppm and S-N stretching vibration at 931 cm−1 indicate the formation of the target compound. The compound crystallized in the monoclinic crystal system and P21 space group with four molecules of the compound in the asymmetric unit. Molecular aggregation in the crystal structure revealed a 12-molecule aggregate synthon sustained by O-H⋯O hydrogen bonds and stabilised by N-H⋯O intermolecular contacts. Experimental studies were complemented by DFT calculations at the B3LYP/6-311++G(d,p) level of theory. The computed structural and spectroscopic data are in good agreement with those obtained experimentally. The energies of interactions between the units making up the molecule were calculated. Molecular docking studies showed that DNSPA has a binding energy of −6.37 kcal/mol for E. coli DNA gyrase (5MMN) and −6.35 kcal/mol for COVID-19 main protease (6LU7).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号