首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   0篇
化学   25篇
晶体学   1篇
数学   22篇
物理学   12篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2014年   1篇
  2013年   10篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  2002年   5篇
  2001年   2篇
  1999年   1篇
  1994年   1篇
  1990年   1篇
  1986年   1篇
  1982年   1篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
排序方式: 共有60条查询结果,搜索用时 31 毫秒
1.
Barium titanate ceramics were prepared using the nanopowder resulting from a polymeric precursor method, a type of modified Pechini process. The obtained nanopowder was observed to agglomerate and in order to de-agglomerate the powder and enhance the properties of the barium titanate the material was attrition milled. The impact of this attrition milling on the electrical properties of the barium titanate was analysed. The temperature dependence of the relative dielectric permittivity showed three structural phase transitions that are characteristic for ferroelectric barium titanate ceramics. The relative dielectric permittivity at the Curie temperature was higher for the attrition-treated sample than for the non-treated barium titanate. The dielectric losses were below 0.04 in both barium titanate ceramics. The grain and grain-boundary contributions to the total resistivity were observed using impedance analyses for both ceramics. A well-defined ferroelectric hysteresis loop and piezoelectric coefficient d33 = 150 pC/N were obtained for the ceramics prepared from the de-agglomerated powder. In this way we were able to demonstrate that by attrition milling of chemically obtained powders the ferroelectric and piezoelectric properties of the ceramics could be enhanced.  相似文献   
2.
Prussian blue (PB) is an electrochromic material, which can be used as a signal transducer in the formation of optical urea biosensors. The previous researches in electrochromic properties of PB demonstrated the optical PB response to ammonium ions, which occurs when ammonium ions are interacting with PB layer at a constant 0.2 V vs Ag|AgCl|KClsat potential. In this work PB optical dependence on ammonium ions concentration was applied in the formation of electrochromic urea biosensor. Biosensor was formed by modifying the optically transparent indium tin oxide (ITO) coated glass electrode (glass/ITO) with Prussian blue layer and immobilizing urease (glass/ITO/PB‐urease). Calibration curve showed the linear dependency (R2=0.995) between the change of maximal absorbance (ΔA) and urea concentration in concentration range varying from 3 mM to 30 mM. The highest sensitivity (4 ΔA M?1) of glass/ITO/PB‐urease biosensor is in the concentration range from 7 mM to 30 mM. It was determined that working principle of the glass/ITO/PB‐urease biosensor is not related to pH changes occurring during enzymatic hydrolysis of urea.  相似文献   
3.
Electrical conduction in the temperature range of 120–370 K has been studied in sandwiched structures of Al/Ta2O5/Si. The tantalum oxide films were prepared by evaporation of tantalum on a p-Si crystal substrate, followed by oxidation at a temperature of 600°C. The temperature-dependent current-voltage (I–V) characteristics are explained on the basis of a phonon-assisted tunnelling model. The same explanation is given for I–V data measured on Ta2O5 films by other investigators. From the comparison of experimental data with theory the density of states in the interface layer is derived and the electron-phonon interaction constant is assessed.   相似文献   
4.
5.
6.
We present a method for numerical calculation of two dimensional distributions of the attempt relaxation times and activation energies from the temperature dependence of the experimental dielectric permittivity dispersion. We introduce empirical attempts to account for broad and/or asymmetric dispersions with the idea of using a weighted collection of Debye relaxation times. Then we present a modification of the aforementioned idea including attempt relaxation time and activation energy using the Arrhenius law, which significantly complicates the computation of the aforementioned distribution. Incorporating the activation energy and the attempt relaxation time into the equation transforms the discretized matrix equations into tensor equations. We rework the tensor equations into simpler matrix equations, thus permitting us to solve the presented discretized integral equation by using existing Least Distance Problem solving methods. Also, we present a regularization method and a way to choose the regularization parameter based on a best fit criterion. In the end we discuss the method showing some simulated results and experimental results. We then point out some problems involved in the calculations and propose methods to reduce their significance.  相似文献   
7.
Investigation results of dielectric and ultrasonic properties of layered CuInP2S6 crystals are presented. At low frequencies, dielectric spectra are highly influenced by the high ionic conductivity with the activation energy of 7357.4?K (0.635?eV). The high-frequency part of the spectra is determined by relaxational soft mode. The critical slowing down and Debye-type dispersion show the order–disorder type of the phase transition. The temperature dependence of the relaxational soft mode and dielectric contribution show a quasi-one-dimensional behaviour. Ultrasonic velocity exhibits critical slowing down which is accompanied by attenuation peaks in the phase transition region. Layered CuInP2S6 crystals have extremely large elastic nonlinearity in the direction perpendicular to layers. The nonlinear elastic parameters substantially increases at the PT temperature.  相似文献   
8.
Investigation results of dielectric (20?Hz–1?MHz) properties of layered CuBiP2Se6 crystals are presented. The temperature dependence of the static dielectric permittivity reveals the first-order “displacive” antiferroelectric phase transition at T c?=?136?K. In the paraelectric phase, at low frequencies, dielectric spectra are highly influenced by the high ionic conductivity with the activation energy of 2473?K (0.21?eV). In the antiferroelectric phase the electrical conductivity and its activation energy (531.1?K (0.045?eV)) are considerably smaller. At low temperatures, the temperature behaviour of the distribution of relaxation times reveals complex freezing phenomena. A part of long relaxation time distribution is strongly affected by external direct current (DC) electric field and it is obviously caused by antiferroelectric domain dynamics.  相似文献   
9.
This paper presents the results of an investigation of microwave dielectric dispersion in the proper semiconductive ferroelectrics TIInS2 and TIGaSe2 with an incommensurate structure modulation. In these crystals there is a strongly overdamped soft ferroelectric mode, whose frequency in the vicinity of the phase transitions drops to the millimetre wave region and causes dielectric microwave dispersion plus a high contribution to the static dielectric permittivity. Within the incommensurate phase crystal defects, such as impurities, cause pinning of the soft mode. Because of this pinning effect the phason frequency increases. Pinning also changes the dynamical dielectric properties and the contribution of the phason and amplitudon to the static permittivity.  相似文献   
10.
In this work, three types of electrodes suitable for amperometric glucose biosensors were designed. One type of electrode was based on bio‐selective layer of polypyrrole/(glucose oxidase)/(Prussian Blue) (Ppy/GOx/PB) and it was used as a control electrode regarding to which electrochemical properties of two other types of electrodes were compared. During the formation of Prussian blue layers graphite electrodes were additionally modified by Ni‐hexacyanoferrate (NiHCF) and by Co‐hexacyanoferrate (CoHCF) in order to design Ppy/GOx/PB‐NiHCF and Ppy/GOx/PB‐CoHCF electrodes, respectively. Some physicochemical characteristics of all three types of electrodes were evaluated and compared. The Ppy/GOx/PB‐NiHCF electrode showed wider linear range of the calibration curve than Ppy/GOx/PB and Ppy/GOx/PB‐CoHCF electrodes. The effect of temperature on analytical performance of the Ppy/GOx/PB‐NiHCF based biosensor has been evaluated and activation energy of enzyme catalysed reaction has been calculated within the temperature range of 15 °C to 30 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号