首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
化学   2篇
力学   13篇
数学   6篇
物理学   5篇
  2024年   1篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   2篇
  2009年   6篇
  2006年   1篇
  2005年   1篇
  1992年   2篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
This paper examines the combined effects of a transverse magnetic field and variable viscosity on unsteady flow of a reactive third‐grade electrically conducting fluid and heat transfer in a channel with convective cooling at the surface. It is assumed that the fluid has small electrical conductivity and the electromagnetic force produced is very small. The coupled nonlinear partial differential equations governing the problem are derived and solved numerically using a semi‐implicit finite‐difference scheme. Both numerical and graphical results are presented and physical aspects of the problem are discussed with respect to various parameters embedded in the system. It is in general noted that those parameters that increase/decrase one flow quantity (velocity or temperature) also lead to the increase/decrease respectively of the other quantity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
2.
In this paper, the temporal development of small disturbances in a pressure‐driven fluid flow through a channel filled with a saturated porous medium is investigated. The Brinkman flow model is employed in order to obtain the basic flow velocity distribution. Under normal mode assumption, the linearized governing equations for disturbances yield a fourth‐order eigenvalue problem, which reduces to the well‐known Orr–Sommerfeld equation in some limiting cases solved numerically by a spectral collocation technique with expansions in Chebyshev polynomials. The critical Reynolds number Rec, the critical wave number αc, and the critical wave speed cc are obtained for a wide range of the porous medium shape factor parameter S. It is found that a decrease in porous medium permeability has a stabilizing effect on the fluid flow. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
3.
The steady flow and heat transfer of an electrically conducting fluid with variable viscosity and electrical conductivity between two parallel plates in the presence of a transverse magnetic field is investigated. It is assumed that the flow is driven by combined action of axial pressure gradient and uniform motion of the upper plate. The governing nonlinear equations of momentum and energy transport are solved numerically using a shooting iteration technique together with a sixth-order Runge-Kutta integration algorithm. Solutions are presented in graphical form and given in terms of fluid velocity, fluid temperature, skin friction and heat transfer rate for various parametric values. Our results reveal that the combined effect of magnetic field, viscosity, exponents of variable properties, various fluid and heat transfer dimensionless quantities and the electrical conductivity variation, have significant impact on the hydromagnetic and electrical properties of the fluid.  相似文献   
4.
This article investigates an unbiased analysis for the unsteady two-dimensional laminar flow of an incompressible, electrically and thermally conducting fluid across the space separated by two infinite rotating permeable walls.The influence of entropy generation, Hall and slip effects are considered within the flow analysis. The problem is modeled based on valid physical arguments and the unsteady system of dimensionless PDEs (partial differential equations) are solved with the help of Finite Difference Scheme. In the presence of pertinent parameters, the precise movement of the flow in terms of velocity, temperature, entropy generation rate, and Bejan numbers are presented graphically, which are parabolic in nature. Streamline profiles are also presented, which exemplify the accurate movement of the flow. The current study is one of the infrequent contributions to the existing literature as previous studies have not attempted to solve the system of high order non-linear PDEs for the unsteady flow with entropy generation and Hall effects in a permeable rotating channel. It is expected that the current analysis would provide a platform for solving the system of nonlinear PDEs of the other unexplored models that are associated to the two-dimensional unsteady flow in a rotating channel.  相似文献   
5.
In this paper, a linear stability analysis is presented to trace the time evolution of an infinitesimal, two-dimensional disturbance imposed on the base flow of an electrically conducting fluid in a channel filled with a saturated porous medium under the influence of a transversely imposed magnetic field. An eigenvalue problem is obtained and solved numerically using the Chebyshev collocation spectral method. The critical Reynolds number Re c, the critical wave number α c and the critical wave speed c c are obtained for a wide range of the porous medium shape factor parameter S and Hartmann number H. It is found that an increase in the magnetic field intensity and a decrease in porous medium permeability have a stabilizing effect on the fluid flow.  相似文献   
6.
研究三阶流体在重力作用下,沿着一个倾斜等温的,带绝热自由表面时薄膜流动的热临界机理.假设是Arrhenius动力学意义下的发热反应,同时不计物质消耗.得到了动量和能量守恒的非线性控制方程,并以MAPLE为工具,基于一种特殊形式的Hermite-Padé近似技术,使用一种全新的数值逼近方法解之.这种半数值方法比之传统的方法,如有限差分法、频谱法、打靶法等,具有一定的优势.得到了解函数的解析结构,并对全部流动结构的重要性能,包括速度场、温度场、热临界和分岔加以讨论.  相似文献   
7.
This study is devoted to the investigation of thermal criticality for a reactive gravity driven thin film flow of a third-grade fluid with adiabatic free surface down an inclined isothermal plane. It is assumed that the reaction is exothermic under Arrhenius kinetics, neglecting the consumption of the material. The governing non-linear equations for conservation of momentum and energy are obtained and solved by using a new computational approach based on a special type of Hermite-Padé approximation technique implemented in MAPLE. This semi-numerical scheme offers some advantages over solutions obtained with traditional methods such as finite differences, spectral method, and shooting method. It reveals the analytical structure of the solution function. Important properties of overall flow structure including velocity field, temperature field, thermal criticality, and bifurcations are discussed.  相似文献   
8.
In this paper, the steady state solutions for the strongly exothermic decomposition of a combustible material uniformly distributed in a heated cylindrical pipe under Bimolecular, Arrhenius and Sensitised reaction rates, neglecting the consumption of the material are examined. Analytical solutions are constructed for the governing nonlinear boundary-value problem using perturbation technique together with a special type of Hermite–Padé approximants and important properties of the temperature field including bifurcations and thermal criticality are discussed.  相似文献   
9.
Development of an apparatus for biaxial testing using cruciform specimens   总被引:2,自引:1,他引:2  
A testing apparatus has been developed to study the behavior of sheet metals and composite materials under monotonic and cyclic biaxial loading conditions. This test facility employs cruciform specimens that are loaded in their plane. Problems encountered while developing the test system are discussed.We also discuss the difficulties common to test methods employing cruciform specimens. These relate to the design of a suitable specimen geometry and to the determination of the stresses throughout the specimen. A method for designing an optimal geometry for these specimens is presented. This method is based on the statistical tools of factorial and response surface designs. The statistical method, coupled with a finite-element analysis of the specimen, was successfully applied to optimize the geometry of a cruciform specimen with a circular reduced central region.Paper was presented at the 1989 SEM Spring Conference on Experimental Mechanics held in Cambridge, MA on May 28–June 8.  相似文献   
10.
This study focuses on the transient analysis of nonlinear dispersion of a polymeric pollutant ejected by an external source into a laminar pipe flow of a Newtonian liquid under axi-symmetric conditions.The influence of density variation with pollutant concentration is approximated according to the Boussinesq approximation and the nonlinear governing equations of momentum,pollutant concentration are obtained together with and Oldroyd-B constitutive model for the polymer stress.The problem is solved numerically using a semi-implicit finite difference method.Solutions are presented in graphical form for various parameter values and given in terms of fluid velocity,pollutant concentration,polymer stress components,skin friction and wall mass transfer rate.The model can be a useful tool in understanding the dynamics of industrial pollution situations arising from improper discharge of hydrocarbon pollutants into,say,water bodies.The model can also be quite useful for available necessary early warning methods for detecting or predicting the scale of pollution and hence help mitigate related damage downstream by earlier instituting relevant decontamination measures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号