首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
力学   2篇
数学   22篇
物理学   1篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
Potentials of the Schrödinger equation, slowly decreasing at infinity, generate an infinite discrete spectrum converging to zero. The inverse scattering problem in the class of such potentials is solved in a constructive way similarly to the classical soliton theory. An infinite-dimensional system arising from Backlund transformations over soliton solutions plays the role of a determinant representation of the potential. The asymptotics at infinity is derived by use of the Poisson summation formula. An application to the long-time asymptotics of the solution of the Korteweg-de Vries equation is considered.In Memory of Prof. M. C. PolivanovInstitute of Mathematics, Urals Branch, Russian Academy of Sciences, 450000, Chernyshevsky str. 112, Ufa, Russia. Published in Teoreticheskaya i Matematicheskaya Fizika, Vol. 93, No. 2, pp. 286–301, November, 1992.  相似文献   
2.
3.
A version of the Fair–Luke algorithm has been used to find the Padé approximate solutions to the Painlevé I, II, and IV equations. The distributions of poles in the complex plane are studied to check the dynamics of movable poles and the emergence of rational and truncated solutions, as well as various patterns formed by the poles. The high-order approximations allow us to check asymptotic expansions at infinity and estimate the range of asymptotic domains. The Coulomb gas interpretation of the pole ensembles is discussed in view of the patterns arising in Painlevé IV transcendents.  相似文献   
4.
5.
6.
The distribution of poles of zero-parameter solution to Painlevé I, specified by P. Boutroux as intégrale tritronquée, is studied in the complex plane. This solution has regular asymptotics ? $ \sqrt {{z \mathord{\left/ {\vphantom {z 6}} \right. \kern-0em} 6}} $ + O(1) as z → ∞, | arg z| < 4π/5. At the sector | arg z| > 4π/5 it is a meromorphic function with regular asymptotic distribution of poles at infinity. This fact together with numeric simulations for |z| < const allowed B. Dubrovin to make a conjecture that all poles of the intégrale tritronquée belong to this sector. As a step to prove this conjecture, we study the Riemann-Hilbert (RH) problem related to the specified solution of the Painlevé I equation. It is “undressed” to a similar RH problem for the Schrödinger equation with cubic potential. The latter determines all coordinates of poles for the intégrale tritronquée via a Bohr-Sommerfeld quantization conditions.  相似文献   
7.
8.
A simple exact formula is derived for the profile of the optical pulse propagating over a DM fiber with zero mean dispersion. The dissipation is neglected, and dispersion is assumed to be constant along the adjacent legs of the waveguide, thus providing the applicability of the integrable NLS models within each leg. The formula describes a class of solutions called dispersion-managed solitons (DM solitons), which are periodic along the waveguide and exponentially localized in time. The DM solitons are parameterized by a certain class of spectral data, specified from numerical simulations. Using a related Riemann–Hilbert problem, we reconstruct a profile of the DM soliton from the given spectral data. For sufficiently long legs, the leading term of DM soliton is found in explicit form by asymptotic undressing of the Riemann–Hilbert problem. The analytic results are compared with numerical simulations.  相似文献   
9.
10.
A classification of solutions of the first and second Painlevé equations corresponding to a special distribution of poles at infinity is considered. The relation between this distribution and singularities of the two-dimensional complex monodromy data manifold used for the parameterization of the solutions is analyzed. It turns out that solutions of the Painlevé equations have no poles in a certain critical sector of the complex plane if and only if their monodromy data lie in the singularity submanifold. Such solutions belong to the so-called class of “truncated” solutions (intégrales tronquée) according to P. Boutroux’s classification. It is shown that all known special solutions of the first and second Painlevé equations belong to this class.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号