首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   2篇
  国内免费   1篇
化学   91篇
力学   4篇
数学   6篇
物理学   18篇
  2022年   23篇
  2021年   8篇
  2020年   6篇
  2019年   3篇
  2018年   5篇
  2017年   2篇
  2016年   9篇
  2015年   4篇
  2014年   5篇
  2013年   4篇
  2012年   12篇
  2011年   14篇
  2010年   11篇
  2009年   3篇
  2008年   1篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2001年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有119条查询结果,搜索用时 15 毫秒
1.
The compositions of microdistilled and hydrodistilled essential oils of the mastix ofPistacia eurycarpaYalt. (Anacardiaceae) were compared. The essential oils were analyzed by GC/MS:- andbeta;-pinenes were found as the major constituents. The antimicrobial activity of the hydrodistilled oil was determined due to the ethnomedical uses of the oleo-gum resin on skin diseases.  相似文献   
2.
Artemisia verlotiorum Lamotte is recognized medicinally given its long-standing ethnopharmacological uses in different parts of the world. Nonetheless, the pharmacological properties of the leaves of the plant have been poorly studied by the scientific community. Hence, this study aimed to decipher the phytochemicals; quantify through HPLC-ESI-MS analysis the plant’s biosynthesis; and evaluate the antioxidant, anti-tyrosinase, amylase, glucosidase, cholinesterase, and cytotoxicity potential on normal (NIH 3T3) and human liver and human colon cancer (HepG2 and HT 29) cell lines of this plant species. The aqueous extract contained the highest content of phenolics and phenolic acid, methanol extracted the most flavonoid, and the most flavonol was extracted by ethyl acetate. The one-way ANOVA results demonstrated that all results obtained were statistically significant at p < 0.05. A total of 25 phytoconstituents were identified from the different extracts, with phenolic acids and flavonoids being the main metabolites. The highest antioxidant potential was recorded for the aqueous extract. The best anti-tyrosinase extract was the methanolic extract. The ethyl acetate extract of A. verlotiorum had the highest flavonol content and hence was most active against the cholinesterase enzymes. The ethyl acetate extract was the best α-glucosidase and α-amylase inhibitor. The samples of Artemisia verlotiorum Lamotte in both aqueous and methanolic extracts were found to be non-toxic after 48 h against NIH 3T3 cells. In HepG2 cells, the methanolic extract was nontoxic up to 125 µg/mL, and an IC50 value of 722.39 µg/mL was recorded. The IC50 value exhibited in methanolic extraction of A. verlotiorum was 792.91 µg/mL in HT29 cells. Methanolic extraction is capable of inducing cell cytotoxicity in human hepatocellular carcinoma without damaging normal cells. Hence, A. verlotiorum can be recommended for further evaluation of its phytochemical and medicinal properties.  相似文献   
3.
This exploratory investigation aimed to determine the chemical composition and evaluate some biological properties, such as antioxidant, anti-inflammatory, antidiabetic, and antimicrobial activities, of Matricaria chamomilla L. essential oils (EOs). EOs of M. chamomilla were obtained by hydrodistillation and phytochemical screening was performed by gas chromatography–mass spectrophotometry (GC-MS). The antimicrobial activities were tested against different pathogenic strains of microorganisms by using disc diffusion assay, the minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) methods. The antidiabetic activity was performed in vitro using the enzyme inhibition test. The antioxidant activity of EOs was tested using the free radical scavenging ability (DPPH method), ferrous ion chelating (FIC) ability, and β-carotene bleaching assay. The anti-inflammatory effects were tested in vivo using the carrageenan-induced paw edema method and in vitro using the inhibition of the lipoxygenase test. The analysis of the phytochemical composition by GC-MS revealed that camphor (16.42%) was the major compound of EOs, followed by 3-carene (9.95%), β-myrcene (8.01%), and chamazulene (6.54%). MCEO, honey, and their mixture exhibited antioxidant activity against the DPPH assay (IC50 ranging from 533.89 ± 15.05 µg/mL to 1945.38 ± 12.71 µg/mL). The mixture exhibited the best radical scavenging activity, with an IC50 of 533.89 ± 15.05 µg/mL. As antidiabetic effect, EO presented the best values against α-glucosidase (265.57 ± 0.03 μg/mL) and α-amylase (121.44 ± 0.05 μg/mL). The EOs and honey mixture at a dose of 100 mg/kg exhibited a high anti-inflammatory effect, with 63.75% edema inhibition after 3 h. The impact of EOs on the studied species showed an excellent antimicrobial (Staphylococcus aureus ATCC 29213 (22.97 ± 0.16 mm)), antifungal (Aspergillus niger (18.13 ± 0.18 mm)) and anti-yeast (Candida albicans (21.07 ± 0.24 mm) effect against all the tested strains. The results obtained indicate that the EOs of M. chamomilla could be a potential drug target against diabetes, inflammation and microbial infections; however, further investigations to assess their bioactive molecules individually and in combination are greatly required.  相似文献   
4.
The purposes of this investigatory study were to determine the chemical composition of the essential oils (EOs) of Origanum compactum from two Moroccan regions (Boulemane and Taounate), as well as the evaluation of their biological effects. Determining EOs’ chemical composition was performed by a gas chromatography–mass spectrophotometer (GC-MS). The antioxidant activity of EOs was evaluated using free radical scavenging ability (DPPH method), fluorescence recovery after photobleaching (FRAP), and lipid peroxidation inhibition assays. The anti-inflammatory effect was assessed in vitro using the 5-lipoxygenase (5-LOX) inhibition test and in vivo using the carrageenan-induced paw edema model. Finally, the antibacterial effect was evaluated against several strains using the disk-diffusion assay and the micro-dilution method. The chemical constituent of O. compactum EO (OCEO) from the Boulemane zone is dominated by carvacrol (45.80%), thymol (18.86%), and α-pinene (13.43%). However, OCEO from the Taounate zone is rich in 3-carene (19.56%), thymol (12.98%), and o-cymene (11.16%). OCEO from Taounate showed higher antioxidant activity than EO from Boulemane. Nevertheless, EO from Boulemane considerably inhibited 5-LOX (IC50 = 0.68 ± 0.02 µg/mL) compared to EO from Taounate (IC50 = 1.33 ± 0.01 µg/mL). A similar result was obtained for tyrosinase inhibition with Boulemane EO and Taounate EO, which gave IC50s of 27.51 ± 0.03 μg/mL and 41.83 ± 0.01 μg/mL, respectively. The in vivo anti-inflammatory test showed promising effects; both EOs inhibit and reduce inflammation in mice. For antibacterial activity, both EOs were found to be significantly active against all strains tested in the disk-diffusion test, but O. compactum EO from the Boulemane region showed the highest activity. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) for O. compactum EO from the Boulemane region ranged from 0.06 to 0.25% (v/v) and from 0.15 to 0.21% (v/v) for O. compactum from the Taounate region. The MBC/MIC index revealed that both EOs exhibited remarkable bactericidal effects.  相似文献   
5.
Psidium guajava L. (guava) is a small tree known for its fruit flavor that is cultivated almost around the globe in tropical areas. Its fruit is amazingly rich in antioxidants, vitamin C, potassium, and dietary fiber. In different parts of the world, this plant holds a special place with respect to fruit and nutritional items. Pharmacological research has shown that this plant has more potential than just a fruit source; it also has beneficial effects against a variety of chronic diseases due to its rich nutritional and phytochemical profile. The primary goal of this document is to provide an updated overview of Psidium guajava L. and its bioactive secondary metabolites, as well as their availability for further study, with a focus on the health benefits and potential industrial applications. There have been several studies conducted on Psidium guajava L. in relation to its use in the pharmaceutical industry. However, its clinical efficacy and applications are still debatable. Therefore, in this review a detailed study with respect to phytochemistry of the plant through modern instruments such as GC and LC-MS has been discussed. The biological activities of secondary metabolites isolated from this plant have been extensively discussed. In order to perform long-term clinical trials to learn more about their effectiveness as drugs and applications for various health benefits, a structure activity relationship has been established. Based on the literature, it is concluded that this plant has a wide variety of biopharmaceutical applications. As a whole, this article calls for long-term clinical trials to obtain a greater understanding of how it can be used to treat different diseases.  相似文献   
6.
The bioactive content, antioxidant properties, and enzyme inhibition properties of extracts of Alcea fasciculiflora from Turkey prepared with different solvents (water, methanol, ethyl acetate) and extraction methods (maceration, soxhlet, homogenizer assisted extraction, and ultrasound assisted extraction) were examined in this study. UHPLC-HRMS analysis detected or annotated a total of 50 compounds in A. fasciculiflora extracts, including 18 hydroxybenzoic and hydroxycinnamic acids, 7 Hexaric acids, 7 Coumarins, 15 Flavonoids, and 3 hydroxycinnamic acid amides. The extracts had phenolic and flavonoid levels ranging from 14.25 to 24.87 mg GAE/g and 1.68 to 25.26 mg RE/g, respectively, in the analysis. Both DPPH and ABTS tests revealed radical scavenging capabilities (between 2.63 and 35.33 mg TE/g and between 13.46 and 76.27 mg TE/g, respectively). The extracts had reducing properties (CUPRAC: 40.38–78 TE/g and FRAP: 17.51–42.58 TE/g). The extracts showed metal chelating activity (18.28–46.71 mg EDTAE/g) as well as total antioxidant capacity (phosphomolybdenum test) (0.90–2.12 mmol TE/g). DPPH, ABTS, FRAP, and metal chelating tests indicated the water extracts to be the best antioxidants, while the ethyl acetate extracts had the highest overall antioxidant capacity regardless of the extraction technique. Furthermore, anti-acetylcholinesterase activity was identified in all extracts (0.17–2.80 mg GALAE/g). The water extracts and the ultrasound-assisted ethyl acetate extract were inert against butyrylcholinesterase, but the other extracts showed anti-butyrylcholinesterase activity (1.17–5.80 mg GALAE/g). Tyrosine inhibitory action was identified in all extracts (1.79–58.93 mg KAE/g), with the most effective methanolic extracts. Only the ethyl acetate and methanolic extracts produced by maceration and homogenizer aided extraction showed glucosidase inhibition (0.11–1.11 mmol ACAE/g). These findings showed the overall bioactivity of the different extracts of A. fasciculiflora and provided an overview of the combination of solvent type and extraction method that could yield bioactive profile and pharmacological properties of interest and hence, could be a useful reference for future studies on this species.  相似文献   
7.
Psidium guajava (Guava tree) is one of the most widely known species in the family Myrtaceae. The Guava tree has been reported for its potential antioxidant, anti-inflammatory, antimicrobial, and cytotoxic activities. In the current study, the chemical compositions of the n-hexane extract and the essential oil of P. guajava were investigated using the GC/MS analysis, along with an evaluation of their antioxidant potential, and an investigation into the enzyme inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BchE), tyrosinase, α-amylase, and α-glucosidase. Moreover, molecular docking of the major identified active sites of the target enzymes were investigated. The chemical characterization of the n-hexane extract and essential oil revealed that squalene (9.76%), α-tocopherol (8.53%), and γ-sitosterol (3.90%) are the major compounds in the n-hexane extract. In contrast, the major constituents of the essential oil are D-limonene (36.68%) and viridiflorol (9.68%). The n-hexane extract showed more antioxidant potential in the cupric reducing antioxidant capacity (CUPRAC), the ferric reducing power (FRAP), and the metal chelating ability (MCA) assays, equivalent to 70.80 ± 1.46 mg TE/g, 26.01 ± 0.97 mg TE/g, and 24.83 ± 0.35 mg EDTAE/g, respectively. In the phosphomolybdenum (PM) assay, the essential oil showed more antioxidant activity equivalent to 2.58 ± 0.14 mmol TE/g. The essential oil demonstrated a potent BChE and tyrosinase inhibitory ability at 6.85 ± 0.03 mg GALAE/g and 61.70 ± 3.21 mg KAE/g, respectively. The α-amylase, and α-glucosidase inhibitory activity of the n-hexane extract and the essential oil varied from 0.52 to 1.49 mmol ACAE/g. Additionally, the molecular docking study revealed that the major compounds achieved acceptable binding scores upon docking with the tested enzymes. Consequently, the P. guajava n-hexane extract and oil can be used as a promising candidate for the development of novel treatment strategies for oxidative stress, neurodegeneration, and diabetes mellitus diseases.  相似文献   
8.
There is an increasing interest for the utilization of biomolecules for fabricating novel nanostructures due to their ability for specific molecular recognition, biocompatibility, and ease of availability. Among these molecules, diphenylalanine (Phe-Phe) dipeptide is considered as one of the simplest molecules that can generate a family of self-assembly based nanostructures. The properties of the substrate surface, on which the self-assembly process of these peptides occurs, play a critical role. Herein, we demonstrated the influence of surface texture and functionality on the self-assembly of Phe-Phe dipeptides using smooth silicon surfaces, anodized aluminum oxide (AAO) membranes, and poly(chloro-p-xylylene) (PPX) films having columnar and helical morphologies. We found that helical PPX films, AAO, and silicon surfaces induce similar self-assembly processes and the surface hydrophobicity has a direct influence for the final dipeptide structure whether being in an aggregated tubular form or creating a thin film that covers the substrate surface. Moreover, the dye staining data indicates that the surface charge properties and hence the mechanism of the self-assembly process are different for tubular structures as opposed to the peptidic film. We believe that our results may contribute to the control of surface-induced self-assembly of peptide molecules and this control can potentially allow the fabrication of novel peptide based materials with desired morphologies and unique functionalities for different technological applications.  相似文献   
9.
Metal–organic chemical vapor deposition (MOCVD) is one of the best growth methods for GaN-based materials as well-known. GaN-based materials with very quality are grown the MOCVD, so we used this growth technique to grow InAlN/GaN and AlN/GaN heterostructures in this study. The structural and surface properties of ultrathin barrier AlN/GaN and InAlN/GaN heterostructures are studied by X-ray diffraction (XRD) and atomic force microscopy (AFM) measurements. Screw, edge, and total dislocation densities for the grown samples have been calculated by using XRD results. The lowest dislocation density is found to be 1.69 × 108 cm−2 for Sample B with a lattice-matched In0.17Al0.83N barrier. The crystal quality of the studied samples is determined using (002) symmetric and (102) asymmetric diffractions of the GaN material. In terms of the surface roughness, although reference sample has a lower value as 0.27 nm of root mean square values (RMS), Sample A with 4-nm AlN barrier layer exhibits the highest rough surface as 1.52 nm of RMS. The structural quality of the studied samples is significantly affected by the barrier layer thickness. The obtained structural properties of the samples are very important for potential applications like high-electron mobility transistors (HEMTs).  相似文献   
10.
Functional polymer/AgNPs nanocomposites have been prepared. Silver nanoparticles (NPs) were synthesized to which polyacrylamide, PAAm, was covalently bound. PAAm was synthesized via a RAFT reaction and carried thiol and carboxylic acid end groups. Thiol was used to bind the polymer to the metal surface and carboxyl for further reactions. The AgNPs were used in a post‐crosslinking reaction with a separately synthesized poly(butyl acrylate‐co‐methyl methacrylate)/polyglycidyl methacrylate core/shell latex bearing epoxy functional groups. Dynamic mechanical analysis showed that the functional AgNPs effectively crosslinked the latex polymer, and that the final product had excellent mechanical strength. Antibacterial tests revealed that the nanocomposite films had strong antibacterial activity against all types of the bacteria and the immobilization of silver NPs by crosslinking retarded the release of silver in comparison to the uncrosslinked ones. With the presented method, it is possible to obtain ductile antibacterial nanocomposites to be used as waterborne functional coatings. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1435–1447  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号