首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
化学   11篇
力学   5篇
数学   3篇
物理学   3篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2008年   2篇
  2006年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.

Fluid atomic behavior is an important factor for industrial applications. Computer simulations based on simple models predict Poiseuille flow for these atomic structures with the presence of external force. In this work, we describe the dynamical properties of Ar and O2 flows with precise atomic arrangement via dissipative particle dynamics (DPD) and molecular dynamics (MD) simulation approaches. In these methods, each model is represented by using Large-scale Atomic/Molecular Massively Parallel Simulator package. Simulation results show that maximum rate for velocity of Ar flow in platinum and copper microchannels is 0.100 (unit less)/0.091 Å ps?1 and 0.121 (unit less)/0.105 Å ps?1 by using DPD/MD approach. This atomic parameter changes to 0.111 (unit less)/0.102 Å ps?1 and 0.125 (unit less)/0.108 Å ps?1 for O2 fluid with mentioned approaches. By decreasing the microchannel size, the maximum rate of velocity reaches to 0.101 (unit less)/0.099 Å ps?1 and maximum temperature rate decreases to 485 (unit less)/440 K with DPD/MD approaches. These calculated parameters can be used in industrial application designing for some processes such as heat transfer in structures. It was seen that the developed DPD approach was able to simulate the fluid flow and heat transfer of various types of fluids at micro- and nanoscales with suitable accuracy versus MD.

  相似文献   
2.
Clinical engineering departments in hospitals are responsible for establishing and regulating a Medical Equipment Management Program to ensure that medical devices are safe and reliable. In order to mitigate functional failures, significant and critical devices should be identified and prioritized. In this paper, we present a multi-criteria decision-making model to prioritize medical devices according to their criticality. Devices with lower criticality scores can be assigned a lower priority in a maintenance management program. However, those with higher scores should be investigated in detail to find the reasons for their higher criticality, and appropriate actions, such as ‘preventive maintenance’, ‘user training’, ‘redesigning the device’, etc, should be taken. In this paper,we also describe how individual score values obtained for each criterion can be used to establish guidelines for appropriate maintenance strategies for different classes of devices. The information of 26 different medical devices is extracted from a hospital's maintenance management system to illustrate an application of the proposed model.  相似文献   
3.
Nonlinear Dynamics - This study is dedicated to investigate the nonlinear dynamics of a system composed of a flexible rotor shaft carrying a longitudinally dispositioned unbalanced rigid disc. The...  相似文献   
4.
Shift of resonance frequency in microsphere optical resonator due to attachment of a desirable particle is obtained. Our 3-D finite element numerical method (FEM) simulations’ results show the path of light through microsphere and its variation due to attachment of particle. It is apparent that after attachment of particle to microsphere's surface, light is inclined to pass through the particle. Subsequently, the path of light becomes longer than previous. Because of this phenomenon, the resonance wavelength shifts to longer wavelengths. It is shown that microsphere optical resonator is a prominent biosensor for single virus detection since we applied characteristics of virus for particle in our simulations. Response of this biosensor depends on the characteristics of particle like its radius as we show in this article. Transmission spectrum of fiber which reveals a selected resonance frequency, have been studied in the frequency range of 106.3 to 107 THz under three different sizes of particles. The results show that the amount of frequency shift rises by enhancement of particle's size.  相似文献   
5.
This paper proposes two optimization models for the periodic inspection of a system with “hard-type” and “soft-type” components. Given that the failures of hard-type components are self-announcing, the component is instantly repaired or replaced, but the failures of soft-type components can only be detected at inspections. A system can operate with a soft failure, but its performance may be reduced. Although a system may be periodically inspected, a hard failure creates an opportunity for additional inspection (opportunistic inspection) of all soft-type components. Two optimization models are discussed in the paper. In the first, soft-type components undergo both periodic and opportunistic inspections to detect possible failures. In the second, hard-type components undergo periodic inspections and are preventively replaced depending on their condition at inspection. Soft-type and hard-type components are either minimally repaired or replaced when they fail. Minimal repair or replacement depends on the state of a component at failure; this, in turn, depends on its age. The paper formulates objective functions for the two models and derives recursive equations for their required expected values. It develops a simulation algorithm to calculate these expected values for a complex model. Several examples are used to illustrate the models and the calculations. The data used in the examples are adapted from a real case study of a hospital’s maintenance data for a general infusion pump.  相似文献   
6.
A method for enhancing trapped electrons in the laser wake-field acceleration in dilute plasma is proposed. In this method, a thin layer with near critical density is placed in front of the dilute plasma. Upon interaction of this layer with a short and high power laser pulse, a relatively large number of layer electrons are injected in dilute plasma. Some of these electrons are trapped in the wake-field of transmitted laser pulse. Particle in cell simulation is used to demonstrate this method. Simulations showed that in addition to increasing the number of trapped electrons, this mechanism also reduces the energy broadening.  相似文献   
7.
Cu–1,4‐benzenedioxyacetic acid (Cu‐1,4‐BDOAH2) with a narrow band gap (2.52 eV) was synthesized and doped with Ce to afford Ce:Cu‐1,4‐BDOAH2 as an efficient photocatalyst with narrower band gap (2.39 eV). The prepared Cu‐1,4‐BDOAH2 and Ce:Cu‐1,4‐BDOAH2 were characterized using Fourier transform infrared, energy‐dispersive X‐ray, diffuse reflectance spectroscopies, scanning electron microscopy and X‐ray diffraction. The sonophotocatalytic degradation of diazinon was carried out in a batch‐mode reactor using visible light‐driven Ce:Cu‐1,4‐BDOAH2 photocatalyst as well as ultrasonic irradiation. The narrow band gap of the photocatalyst means that it can be activated under visible light illumination. The effects of operational parameters such as initial diazinon concentration (5–25 mg l?1), pH (2–10), photocatalyst dosage (10–30 mg) and irradiation time (10–30 min) on the sonophotocatalytic degradation efficiency were investigated using central composite design under response surface methodology. The optimization process was studied using desirability function and the results indicated 99.8% degradation, which was obtained at optimum values of 25 mg l?1, 6, 20 mg and 20 min for the initial concentration of diazinon, pH, photocatalyst dosage and irradiation time, respectively. Reusability experiments of Ce:Cu‐1,4‐BDOAH2 photocatalyst showed that it is quite stable with excellent catalytic activity even after five cycles.  相似文献   
8.
In this paper, the p-version finite element method and its fictitious domain extension, the finite cell method, are extended to the finite strain J2 plasticity. High-order shape functions are used for the finite element approximation of volume-preserving plastic dominated deformations. The accuracy and efficiency of p-version elements and cells in the finite plastic strain range are evaluated by the computation of two benchmark problems. It is shown that they provide locking free behavior and simplified meshing. These results are verified in comparison with the results of h-version elements in F-bar formulation. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
9.
Abstract

Stable crystalline phosphorus ylides of 1,1-diethyl 2,3-dimethyl 1-(acetylamino)-3-(1,1,1-triphenylphosphanilidine)-1,1,2,3-propanetetracarboxylates were obtained in excellent yields from the 1:1:1 addition reaction between triphenylphosphine and dialkyl acetylenedicarboxylates in the presence of diethyl acetamidomalonate as a CH-acid. These stable ylides exist in solution as a mixture of two geometrical isomers (E and Z) as a result of restricted rotation around the carbon–carbon partial double bond resulting from conjugation of the ylide moiety with the adjacent carbonyl group on the nuclear magnetic resonance (NMR) time scale at ambient temperature. The dynamic effects in the ylide moieties were investigated by 1H NMR spectra.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   
10.
Every year, a large amount of wastewater is discharged from various industries into the environment, and various methods are used to treat wastewater to reduce the amount of pollutants. Electrocoagulation (EC) is an electrochemically based technique that generates coagulant species in situ from the electrodissolution of sacrificial anodes, usually made of iron or aluminum destabilizes suspended, dissolved, or emulsified pollutants by using an electric current. It has a potential in removing various kinds of pollutants including organic and inorganic contaminants for various types of wastewater. The effectiveness of EC process depends on various parameters including pH, electrode, operation time, and current density. The goal of this study is to review the most relevant literatures that were published recently. The main challenges associated with the EC process are electrode passivation and energy consumption. EC compared with other common methods has advantages such as reducing energy consumption and reducing operating costs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号